Skip to main content

Advertisement

Log in

Fetuin-A influences vascular cell growth and production of proinflammatory and angiogenic proteins by human perivascular fat cells

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Fetuin-A (alpha2-Heremans-Schmid glycoprotein), a liver-derived circulating glycoprotein, contributes to lipid disorders, diabetes and cardiovascular diseases. In a previous study we found that perivascular fat cells (PVFCs) have a higher angiogenic potential than other fat cell types. The aim was to examine whether fetuin-A influences PVFC and vascular cell growth and the expression and secretion of proinflammatory and angiogenic proteins, and whether TLR4-independent pathways are involved.

Methods

Mono- and co-cultures of human PVFCs and endothelial cells were treated with fetuin-A and/or palmitate for 6–72 h. Proteins were quantified by ELISA and Luminex, mRNA expression by real-time PCR, and cell growth by BrDU-ELISA. Some PVFCs were preincubated with a nuclear factor κB NFκBp65 inhibitor, or the toll-like receptor 4 (TLR4) inhibitor CLI-095, or phosphoinositide 3-kinase (PI3K)/Akt inhibitors and/or stimulated with insulin. Intracellular forkhead box protein O1 (FoxO1), NFκBp65 and inhibitor of κB kinase β (IKKβ) localisation was visualised by immunostaining.

Results

PVFCs expressed and secreted IL-6, IL-8, plasminogen activator inhibitor 1 (PAI-1), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF)-BB, monocyte chemotactic protein-1 (MCP-1), vascular endothelial growth factor (VEGF), placental growth factor (PLGF) and hepatocyte growth factor (HGF). Fetuin-A upregulated IL-6 and IL-8, and this was potentiated by palmitate and blocked by CLI-095. Immunostaining and electrophoretic mobility shift assay (EMSA) showed partial NFκBp65 activation. MCP-1 was upregulated and blocked by CLI-095, but not by palmitate. However, HGF was downregulated, which was slightly potentiated by palmitate. This effect persisted after TLR4 pathway blockade. Stimulation of insulin–PI3K–Akt signalling by insulin resulted in nuclear FoxO1 extrusion and HGF upregulation. Fetuin-A counteracted these insulin effects.

Conclusions/interpretation

Fetuin-A and/or palmitate influence the expression of proinflammatory and angiogenic proteins only partially via TLR4 signalling. HGF downregulation seems to be mediated by interference with the insulin-dependent receptor tyrosine kinase pathway. Fetuin-A may also influence angiogenic and proinflammatory proteins involved in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

bFGF:

Basic FGF

EC:

Endothelial cell

EMSA:

Electrophoretic mobility shift assays

FGF:

Fibroblast growth factor

FoxO1:

Forkhead box protein O1

HGF:

Hepatocyte growth factor

IKKβ:

Inhibitor of κB kinase β

LPS:

Lipopolysaccharide

MCP-1:

Monocyte chemotactic protein-1

NFκB:

Nuclear factor κB

PAI-1:

Plasminogen activator inhibitor-1

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinase

PVAT:

Perivascular adipose tissue

PVFC:

Perivascular fat cell

PLGF:

Placental growth factor

SMC:

Smooth muscle cell

TLR4:

Toll-like receptor 4

TSP-1:

Thrombospondin-1

VEGF:

Vascular endothelial growth factor

References

  1. Mori K, Emoto M, Inaba M (2012) Fetuin-A and the cardiovascular system. Adv Clin Chem 56:175–195

    Article  CAS  PubMed  Google Scholar 

  2. Dziegielewska KM, Andersen NA, Lovell D, Nicol SC, Muller-Esterl W, Saunders NR (1992) Fetuin—a new acute phase protein in the adult and in the fetus. Folia Histochem Cytobiol 30:187–189

    CAS  PubMed  Google Scholar 

  3. Stefan N, Haring HU (2012) The role of hepatokines in metabolism. Nat Rev Endocrinol 9:144–152

    Article  CAS  Google Scholar 

  4. Stefan N, Hennige AM, Staiger H et al (2006) Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 29:853–857

    Article  CAS  PubMed  Google Scholar 

  5. Mori K, Emoto M, Inaba M (2011) Fetuin-A: a multifunctional protein. Recent Pat Endocr Metab Immune Drug Discov 5:124–146

    Article  CAS  PubMed  Google Scholar 

  6. Mathews ST, Chellam N, Srinivas PR et al (2000) Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor. Mol Cell Endocrinol 164:87–98

    Article  CAS  PubMed  Google Scholar 

  7. Rauth G, Pöschke O, Fink E et al (1992) The nucleotide and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor. Eur J Biochem 204:523–529

    Article  CAS  PubMed  Google Scholar 

  8. Ohnishi T, Nakamura O, Arakaki N, Daikuhara Y (1997) Effect of phosphorylated rat fetuin on the growth of hepatocytes in primary culture in the presence of human hepatocyte-growth factor. Evidence that phosphorylated fetuin is a natural modulator of hepatocyte-growth factor. Eur J Biochem 243:753–761

    Article  CAS  PubMed  Google Scholar 

  9. Ohnishi T, Nakamura O, Arakaki N, Miyazaki H, Daikuhara Y (1994) Effects of cytokines and growth factors on phosphorylated fetuin biosynthesis by adult rat hepatocytes in primary culture. Biochem Biophys Res Commun 200:598–605

    Article  CAS  PubMed  Google Scholar 

  10. Hennige AM, Staiger H, Wicke C et al (2008) Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One 12:e1765

    Article  CAS  Google Scholar 

  11. Kim F, Pham M, Luttrell I et al (2007) Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 100:1589–1596

    Article  CAS  PubMed  Google Scholar 

  12. Fessler MB, Rudel LL, Brown JM (2009) Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol 20:379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pal D, Dasgupta S, Kundu R et al (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285

    Article  CAS  PubMed  Google Scholar 

  14. Stefan N, Haring HU (2013) Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans. Nat Med 19:394–395

    Article  CAS  PubMed  Google Scholar 

  15. Stefan N, Fritsche A, Weikert C (2008) Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes 57:2762–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaess BM, Enserro DM, McManus DD et al (2012) Cardiometabolic correlates and heritability of fetuin-A, retinol-binding protein 4, and fatty-acid binding protein 4 in the Framingham Heart Study. J Clin Endocrinol Metab 97:E1943–E1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heinrichsdorff J, Olefsky JM (2012) Fetuin-A: the missing link in lipid-induced inflammation. Nat Med 18:1182–1183

    Article  CAS  PubMed  Google Scholar 

  18. Weikert C, Stefan N, Schulze MB et al (2008) Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation 118:2555–2562

    Article  CAS  PubMed  Google Scholar 

  19. Rittig K, Thamer C, Haupt A et al (2009) High plasma fetuin-A is associated with increased carotid intima-media thickness in a middle-aged population. Atherosclerosis 207:341–342

    Article  CAS  PubMed  Google Scholar 

  20. Fisher E, Stefan N, Saar K et al (2009) Association of AHSG gene polymorphisms with fetuin-A plasma levels and cardiovascular diseases in the EPIC-Potsdam study. Circ Cardiovasc Genet 2:607–613

    Article  CAS  PubMed  Google Scholar 

  21. Voros K, Graf L, Prohaszka Z et al (2011) Serum fetuin-A in metabolic and inflammatory pathways in patients with myocardial infarction. Eur J Clin Invest 41:703–709

    Article  CAS  PubMed  Google Scholar 

  22. Rittig K, Dolderer JH, Balletshofer B et al (2012) The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia 55:1514–1525

    Article  CAS  PubMed  Google Scholar 

  23. Rittig K, Staib K, Machann J et al (2008) Perivascular fatty tissue at the brachial artery is linked to insulin resistance but not to local endothelial dysfunction. Diabetologia 51:2093–2099

    Article  CAS  PubMed  Google Scholar 

  24. Weigert C, Brodbeck K, Staiger H et al (2004) Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-κB. J Biol Chem 279:23942–23952

    Article  CAS  PubMed  Google Scholar 

  25. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    Article  CAS  PubMed  Google Scholar 

  26. Moulton KS, Vakili K, Zurakowski D et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci 100:4736–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sullivan GW, Sarembock IJ, Linden J (2000) The role of inflammation in vascular diseases. J Leukoc Biol 67:591–602

    CAS  PubMed  Google Scholar 

  28. Verhagen SN, Visseren FL (2011) Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis 214:3–10

    Article  CAS  PubMed  Google Scholar 

  29. Ix JH, Wassel CL, Kanaya AM et al (2008) Fetuin-A and incident diabetes mellitus in older persons. JAMA 300:182–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moreno PR, Purushothaman M, Purushothaman KR (2012) Plaque neovascularization: defense mechanisms, betrayal, or a war in progress. Ann N Y Acad Sci 1254:7–17

    Article  CAS  PubMed  Google Scholar 

  31. Chowdhury M, Ghosh J, Slevin M, Smyth JV, Alexander MY, Serracino-Inglott F (2010) A comparative study of carotid atherosclerotic plaque microvessel density and angiogenic growth factor expression in symptomatic versus asymptomatic patients. Eur J Vasc Endovasc Surg 39:388–395

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Wilkinson FL, Kirton JP et al (2007) Hepatocyte growth factor and c-Met expression in pericytes: implications for atherosclerotic plaque development. J Pathol 212:12–19

    Article  CAS  PubMed  Google Scholar 

  33. Kaga T, Kawano H, Sakaguchi M, Nakazawa T, Taniyama Y, Morishita R (2012) Hepatocyte growth factor stimulated angiogenesis without inflammation: differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor. Vasc Pharmacol 57:3–9

    Article  CAS  Google Scholar 

  34. Min JK, Lee YM, Kim JH et al (2005) Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-κB pathway. Circ Res 96:300–307

    Article  CAS  PubMed  Google Scholar 

  35. Bacharach E, Itin A, Keshet E (1992) In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis. Proc Natl Acad Sci 89:10686–10690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simonini A, Moscucci M, Muller DW et al (2000) IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 101:1519–1526

    Article  CAS  PubMed  Google Scholar 

  37. Song A, Xu M, Bi Y et al (2011) Serum fetuin-A associates with type 2 diabetes and insulin resistance in Chinese adults. PLoS One 6:e19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Araujo TG, Oliveira AG, Carvalho BM et al (2012) Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms. Endocrinology 153:5760–5769

    Article  CAS  PubMed  Google Scholar 

  39. Hennige AM, Ranta F, Heinzelmann I et al (2010) Overexpression of kinase-negative protein kinase Cδ in pancreatic beta-cells protects mice from diet-induced glucose intolerance and beta-cell dysfunction. Diabetes 59:119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dasgupta S, Bhattacharya S, Biswas A et al (2010) NF-κB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem J 429:451–462

    Article  CAS  PubMed  Google Scholar 

  41. Takata H, Ikeda Y, Suehiro T et al (2009) High glucose induces transactivation of the alpha2-HS glycoprotein gene through the ERK1/2 signaling pathway. J Atheroscler Thromb 16:448–456

    Article  CAS  PubMed  Google Scholar 

  42. Mori K, Ikari Y, Jono S et al (2010) Fetuin-A is associated with calcified coronary artery disease. Coron Artery Dis 21:281–285

    Article  PubMed  Google Scholar 

  43. Jensen MK, Bartz TM, Mukamal KJ et al (2013) Fetuin-A, type 2 diabetes, and risk of cardiovascular disease in older adults: the cardiovascular health study. Diabetes Care 36(5):1222–1228

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was funded by the Federal Ministry for Education and Research (FkZ 01GI 0925), a grant from the German Federal Ministry of Education and Research to the German Center for Diabetes Research and a grant of from the German Federal Ministry for Education and Research (FkZ 01KQ0902F), joint research project ‘Gesundheitsregion REGINA’.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

DIS-A substantially contributed to conception and design, acquisition of data, and analysis and interpretation of data, drafted and wrote the article, finally approved the version to be published and is responsible for the integrity of the work as a whole. FG, CW and SU contributed substantially to conception and design, data analysis and interpretation of data and revised the article critically for important intellectual content. NS, KR, US, BS and ER contributed to data acquisition, data analysis, interpretation of data and critically revised the manuscript. CK contributed to data acquisition and critically revised the manuscript. H-ES, UAS and AK contributed to data acquisition and critically revised the manuscript. H-UH designed the study and critically revised the manuscript. All authors approved the final version of the manuscript to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea I. Siegel-Axel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Methods

(PDF 40.4 kb)

ESM Fig. 1

(PDF 41.2 kb)

ESM Fig. 2

(PDF 14.5 kb)

ESM Fig. 3

(PDF 420 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel-Axel, D.I., Ullrich, S., Stefan, N. et al. Fetuin-A influences vascular cell growth and production of proinflammatory and angiogenic proteins by human perivascular fat cells. Diabetologia 57, 1057–1066 (2014). https://doi.org/10.1007/s00125-014-3177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3177-0

Keywords

Navigation