Advertisement

Diabetologia

, Volume 57, Issue 5, pp 980–990 | Cite as

Pharmacological application of carbon monoxide ameliorates islet-directed autoimmunity in mice via anti-inflammatory and anti-apoptotic effects

  • Ivana Nikolic
  • Tamara Saksida
  • Katia Mangano
  • Milica Vujicic
  • Ivana Stojanovic
  • Ferdinando NicolettiEmail author
  • Stanislava Stosic-GrujicicEmail author
Article

Abstract

Aims/hypothesis

Recent studies have identified carbon monoxide (CO) as a potential therapeutic molecule for the treatment of autoimmune diseases owing to its anti-inflammatory and anti-apoptotic properties. We explored the efficacy and the mechanisms of action of the CO-releasing molecule (CORM)-A1 in preclinical models of type 1 diabetes.

Methods

The impact of CORM-A1 on diabetes development was evaluated in models of spontaneous diabetes in NOD mice and in diabetes induced in C57BL/6 mice by multiple low-dose streptozotocin (MLDS). Ex vivo analysis was performed to determine the impact of CORM-A1 both on T helper (Th) cell and macrophage differentiation and on their production of soluble mediators in peripheral tissues and in infiltrates of pancreatic islets. The potential effect of CORM-A1 on cytokine-induced apoptosis in pancreatic islets or beta cells was evaluated in vitro.

Results

CORM-A1 conferred protection from diabetes in MLDS-induced mice and reduced diabetes incidence in NOD mice as confirmed by preserved insulin secretion and improved histological signs of the disease. In MLDS-challenged mice, CORM-A1 attenuated Th1, Th17, and M1 macrophage response and facilitated Th2 cell differentiation. In addition, CORM-A1 treatment in NOD mice upregulated the regulatory arm of the immune response (M2 macrophages and FoxP3+ regulatory T cells). Importantly, CORM-A1 interfered with in vitro cytokine-induced beta cell apoptosis through the reduction of cytochrome c and caspase 3 levels.

Conclusions/interpretation

The ability of CORM-A1 to protect mice from developing type 1 diabetes provides a valuable proof of concept for the potential exploitation of controlled CO delivery in clinical settings for the treatment of autoimmune diabetes.

Keywords

Beta cell apoptosis Carbon monoxide-releasing molecule-A1 Cytokines Type 1 diabetes 

Abbreviations

CO

Carbon monoxide

ConA

Concanavalin A

CORM-A1

Carbon monoxide-releasing molecule-A1

ERK

Extracellular signal-regulated kinases

HO

Haem oxygenase

iCORM-A1

Inactive carbon monoxide-releasing molecule-A1

JNK

Jun N-terminal kinase

MLDS

Multiple low-dose streptozotocin

MTT

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

NBT

Nitroblue tetrazolium

NFκB

Nuclear factor κB

NO

Nitric oxide

PC

Peritoneal cell

PLNC

Pancreatic lymph node cell

PMC

Pancreatic-infiltrating mononuclear cell

RORγt

Retinoic acid-related orphan receptor-γt

SC

Splenocyte

STAT

Signal transducer and activator of transcription

STZ

Streptozotocin

Th

T helper cell

Treg

Regulatory T cell

Notes

Acknowledgements

MIN6 cells were kindly obtained from A. Tengholm (Biomedical Centre, Uppsala, Sweden), with the permission of J.-I. Miyazaki (Osaka University, Osaka, Japan), and RINm5F cells were kindly donated by K. Buschard (Bartholin Institutet, Copenhagen, Denmark).

Funding

This work was supported by the European Foundation for the Study of Diabetes (EFSD) New Horizons Collaborative Research Initiative 2013 and Ministry of Education, Science and Technological Development, Republic of Serbia (grant no. 173013).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

IN, TS, FN, MV, IS and SSG contributed to the concept and design of the study. IN, TS, MV, KM, IS and SSG contributed to the acquisition and interpretation of data, and revised the article critically. FN, IS and SSG contributed to drafting the article. All authors gave approval of the final version to be published.

Supplementary material

125_2014_3170_MOESM1_ESM.pdf (360 kb)
ESM Fig. 1 (PDF 360 kb)
125_2014_3170_MOESM2_ESM.pdf (253 kb)
ESM Fig. 2 (PDF 252 kb)
125_2014_3170_MOESM3_ESM.pdf (55 kb)
ESM Fig. 3 (PDF 55 kb)
125_2014_3170_MOESM4_ESM.pdf (450 kb)
ESM Fig. 4 (PDF 450 kb)
125_2014_3170_MOESM5_ESM.pdf (434 kb)
ESM Fig. 5 (PDF 434 kb)
125_2014_3170_MOESM6_ESM.pdf (46 kb)
ESM Fig. 6 (PDF 45 kb)
125_2014_3170_MOESM7_ESM.pdf (644 kb)
ESM Fig. 7 (PDF 643 kb)
125_2014_3170_MOESM8_ESM.pdf (52 kb)
ESM Table 1 (PDF 51 kb)

References

  1. 1.
    Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554PubMedCrossRefGoogle Scholar
  2. 2.
    Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650PubMedCrossRefGoogle Scholar
  3. 3.
    Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9:728–743PubMedCrossRefGoogle Scholar
  4. 4.
    Fagone P, Mangano K, Quattrocchi C et al (2011) Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clin Exp Immunol 163:368–374PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Fagone P, Mangano K, Coco M et al (2012) Therapeutic potential of carbon monoxide in multiple sclerosis. Clin Exp Immunol 167:179–187PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Foresti R, Bani-Hani MG, Motterlini R (2008) Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive Care Med 34:649–658PubMedCrossRefGoogle Scholar
  7. 7.
    Motterlini R, Mann BE, Johnson TR, Clark JE, Foresti R, Green CJ (2003) Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr Pharm Des 9:2525–2539PubMedCrossRefGoogle Scholar
  8. 8.
    Motterlini R, Sawle P, Hammad J et al (2005) CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J 19:284–286PubMedGoogle Scholar
  9. 9.
    Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226PubMedCrossRefGoogle Scholar
  10. 10.
    Herold KC, Vignali DA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13:243–256PubMedCrossRefGoogle Scholar
  11. 11.
    Piccirillo CA, d’Hennezel E, Sgouroudis E, Yurchenko E (2008) CD4+Foxp3+ regulatory T cells in the control of autoimmunity: in vivo veritas. Curr Opin Immunol 20:655–662PubMedCrossRefGoogle Scholar
  12. 12.
    Acharya JD, Ghaskadbi SS (2010) Islets and their antioxidant defense. Islets 2:225–235PubMedCrossRefGoogle Scholar
  13. 13.
    Günther L, Berberat PO, Haga M et al (2002) Carbon monoxide protects pancreatic cells from apoptosis and improves islet function/survival after transplantation. Diabetes 51:994–999PubMedCrossRefGoogle Scholar
  14. 14.
    Hu CM, Lin HH, Chiang MT, Chang PF, Chau LY (2007) Systemic expression of heme oxygenase-1 ameliorates type 1 diabetes in NOD mice. Diabetes 56:1240–1247PubMedCrossRefGoogle Scholar
  15. 15.
    Huang SH, Chu CH, Yu JC et al (2010) Transgenic expression of haem oxygenase-1 in pancreatic beta cells protects non-obese mice used as a model of diabetes from autoimmune destruction and prolongs graft survival following islet transplantation. Diabetologia 53:2389–2400PubMedCrossRefGoogle Scholar
  16. 16.
    Althaus M, Fronius M, Buckhackert Y et al (2009) Carbon monoxide rapidly impairs alveolar fluid clearance by inhibiting epithelial sodium channels. Am J Respir Cell Mol Biol 41:639–650PubMedCrossRefGoogle Scholar
  17. 17.
    Cvetkovic I, Al-Abed Y, Miljkovic D et al (2005) Critical role of macrophage migration inhibitory factor activity in experimental autoimmune diabetes. Endocrinology 146:2942–2951PubMedCrossRefGoogle Scholar
  18. 18.
    Stosic-Grujicic S, Maksimovic D, Badovinac V et al (2001) Antidiabetogenic effect of pentoxifylline is associated with systemic and target tissue modulation of cytokines and nitric oxide production. J Autoimmun 16:47–58PubMedCrossRefGoogle Scholar
  19. 19.
    Cvjeticanin T, Miljkovic D, Stojanovic I, Dekanski D, Stosic-Grujicic S (2010) Dried leaf extract of Olea europaea ameliorates islet-directed autoimmunity in mice. Br J Nutr 103:1413–1424PubMedCrossRefGoogle Scholar
  20. 20.
    Zdravkovic N, Pavlovic S, Zdravkovic V, Pejnovic N, Arsenijevic N, Lukic ML (2013) ST2 gene-deletion reveals a role of Foxp3+ regulatory T cells in diabetes modulation in BALB/c mice. Transl Res 161:118–129PubMedCrossRefGoogle Scholar
  21. 21.
    Stojanovic I, Saksida T, Nikolic I, Nicoletti F, Stosic-Grujicic S (2012) Macrophage migration inhibitory factor deficiency protects pancreatic islets from cytokine-induced apoptosis in vitro. Clin Exp Immunol 169:156–163PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Monboisse JC, Garnotel R, Randoux A, Dufer J, Borel JP (1991) Adhesion of human neutrophils to and activation by type-I collagen involving a β2 integrin. J Leukoc Biol 50:373–380PubMedGoogle Scholar
  23. 23.
    Saksida T, Stosic-Grujicic S, Timotijevic G, Sandler S, Stojanovic I (2012) Macrophage migration inhibitory factor deficiency protects pancreatic islets from palmitic acid-induced apoptosis. Immunol Cell Biol 90:688–698PubMedCrossRefGoogle Scholar
  24. 24.
    Miyazaki J, Araki K, Yamato E et al (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132PubMedCrossRefGoogle Scholar
  25. 25.
    Rydgren T, Sandler S (2002) Efficacy of 1400 W, a novel inhibitor of inducible nitric oxide synthase, in preventing interleukin-1beta-induced suppression of pancreatic islet function in vitro and multiple low-dose streptozotocin-induced diabetes in vivo. Eur J Endocrinol 147:543–551PubMedCrossRefGoogle Scholar
  26. 26.
    Lukic ML, Stosic-Grujicic S, Shahin A (1998) Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev Immunol 6:119–128PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mordes JP, Serreze DV, Greiner DL, Rossini AA (2004) Animal models of autoimmune diabetes mellitus. In: LeRoith D, Taylor SI, Olefsky JM (eds) Diabetes mellitus: a fundamental and clinical text. Lippincott Williams and Wilkins, Philadelphia, pp 591–610Google Scholar
  28. 28.
    Pop SM, Wong CP, Culton DA, Clarke SH, Tisch R (2005) Single cell analysis shows decreasing FoxP3 and TGF coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes. J Exp Med 201:1333–1346PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Rodeghero R, Cao Y, Olalekan SA, Iwakua Y, Glant TT, Finnegan A (2013) Location of CD4+ T cell priming regulates the differentiation of Th1 and Th17 cells and their contribution to arthritis. J Immunol 190:5423–5435PubMedCrossRefGoogle Scholar
  30. 30.
    Chora AA, Fontoura P, Cunha A et al (2007) Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest 117:438–447PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kürschner C, Ozmen L, Garotta G, Dembic Z (1992) IFN-gamma receptor-Ig fusion proteins. Half-life, immunogenicity, and in vivo activity. J Immunol 149:4096–4100PubMedGoogle Scholar
  32. 32.
    Kaplan MH, Sun YL, Hoey T, Grusby MJ (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382:174–177PubMedCrossRefGoogle Scholar
  33. 33.
    Chauveau C, Remy S, Royer PJ et al (2005) Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 106:1694–1702PubMedCrossRefGoogle Scholar
  34. 34.
    Kapturczak MH, Wasserfall C, Brusko T et al (2004) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165:1045–1053PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Simon T, Pogy S, Tardif V et al (2013) Carbon monoxide-treated dendritic cells decrease β1-integrin induction on CD8+ T cells and protect from type 1 diabetes. Eur J Immunol 43:209–218PubMedCrossRefGoogle Scholar
  36. 36.
    Tang Q, Adams JY, Tooley AJ et al (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7:83–92PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Bacchetta R, Bigler M, Touraine JL et al (1994) High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 179:493–502PubMedCrossRefGoogle Scholar
  38. 38.
    Hu X, Liu G, Hou Y et al (2012) Induction of M2-like macrophages in recipient NOD-scid mice by allogeneic donor CD4+CD25+ regulatory T cells. Cell Mol Immunol 9:464–472PubMedCrossRefGoogle Scholar
  39. 39.
    Bogner C, Leber B, Andrews DW (2010) Apoptosis: embedded in membranes. Curr Opin Cell Biol 22:845–851PubMedCrossRefGoogle Scholar
  40. 40.
    Li M, Peterson S, Husney D et al (2007) Interdiction of the diabetic state in NOD mice by sustained induction of heme oxygenase: possible role of carbon monoxide and bilirubin. Antioxid Redox Signal 9:855–863PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ivana Nikolic
    • 1
  • Tamara Saksida
    • 1
  • Katia Mangano
    • 2
  • Milica Vujicic
    • 1
  • Ivana Stojanovic
    • 1
  • Ferdinando Nicoletti
    • 2
    Email author
  • Stanislava Stosic-Grujicic
    • 1
    Email author
  1. 1.Department of Immunology, Institute for Biological Research ‘Sinisa Stankovic’University of BelgradeBelgradeSerbia
  2. 2.Department of Biomedical Sciences, School of MedicineUniversity of CataniaCataniaItaly

Personalised recommendations