Skip to main content

Matrix metalloproteinase 9 opposes diet-induced muscle insulin resistance in mice



Increased extracellular matrix (ECM) collagen is a characteristic of muscle insulin resistance. Matrix metalloproteinase (MMP) 9 is a primary enzyme that degrades collagen IV (ColIV). As a component of the basement membrane, ColIV plays a key role in ECM remodelling. We tested the hypotheses that genetic deletion of MMP9 in mice increases muscle ColIV, induces insulin resistance in lean mice and worsens diet-induced muscle insulin resistance.


Wild-type (Mmp9 +/+) and Mmp9-null (Mmp9 −/−) mice were chow or high-fat (HF) fed for 16 weeks. Insulin action was measured by the hyperinsulinaemic–euglycaemic clamp in conscious weight-matched surgically catheterised mice.


Mmp9 −/− and HF feeding independently increased muscle ColIV. ColIV in HF-fed Mmp9 −/− mice was further increased. Mmp9 −/− did not affect fasting insulin or glucose in chow- or HF-fed mice. The glucose infusion rate (GIR), endogenous glucose appearance (EndoRa) and glucose disappearance (Rd) rates, and a muscle glucose metabolic index (Rg), were the same in chow-fed Mmp9 +/+ and Mmp9 −/− mice. In contrast, HF-fed Mmp9 −/− mice had decreased GIR, insulin-stimulated increase in Rd and muscle Rg. Insulin-stimulated suppression of EndoRa, however, remained the same in HF-fed Mmp9 −/− and Mmp9 +/+ mice. Decreased muscle Rg in HF-fed Mmp9 −/− was associated with decreased muscle capillaries.


Despite increased muscle ColIV, genetic deletion of MMP9 does not induce insulin resistance in lean mice. In contrast, this deletion results in a more profound state of insulin resistance, specifically in the skeletal muscle of HF-fed mice. These results highlight the importance of ECM remodelling in determining muscle insulin resistance in the presence of HF diet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7





Collagen IV


Extracellular matrix


Endogenous glucose appearance rate


Glucose infusion rate



ICv :

Hyperinsulinaemic–euglycaemic clamp


Matrix metalloproteinase


Glucose appearance rate


Glucose disappearance rate


Glucose metabolic index


Superficial vastus lateralis


Vascular endothelial growth factor


von Willebrand factor


  1. Richardson DK, Kashyap S, Bajaj M et al (2005) Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 280:10290–10297

    Article  CAS  PubMed  Google Scholar 

  2. Berria R, Wang L, Richardson DK et al (2006) Increased collagen content in insulin-resistant skeletal muscle. Am J Physiol Endocrinol Metab 290:E560–E565

    Article  CAS  PubMed  Google Scholar 

  3. Kang L, Ayala JE, Lee-Young RS et al (2011) Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice. Diabetes 60:416–426

    Article  CAS  PubMed  Google Scholar 

  4. Kang L, Lantier L, Kennedy A et al (2013) Hyaluronan accumulates with high fat feeding and contributes to insulin resistance. Diabetes 62:1888–1896

    Article  CAS  PubMed  Google Scholar 

  5. Thrailkill KM, Clay Bunn R, Fowlkes JL (2009) Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 35:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207–214

    Article  CAS  PubMed  Google Scholar 

  7. Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8:352–356

    Article  CAS  PubMed  Google Scholar 

  8. Martignetti JA, Aqeel AA, Sewairi WA et al (2001) Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 28:261–265

    Article  CAS  PubMed  Google Scholar 

  9. Peng WJ, Yan JW, Wan YN et al (2012) Matrix Metalloproteinases: a review of their structure and role in systemic sclerosis. J Clin Immunol 32:1409–1414

    Article  CAS  PubMed  Google Scholar 

  10. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    CAS  PubMed  Google Scholar 

  11. Derosa G, Ferrari I, D’Angelo A et al (2008) Matrix metalloproteinase-2 and -9 levels in obese patients. Endothelium J Endothelial Cell Res 15:219–224

    Article  CAS  Google Scholar 

  12. Signorelli SS, Malaponte G, Libra M et al (2005) Plasma levels and zymographic activities of matrix metalloproteinases 2 and 9 in type II diabetics with peripheral arterial disease. Vasc Med 10:1–6

    Article  PubMed  Google Scholar 

  13. Tinahones FJ, Coin-Araguez L, Mayas MD et al (2012) Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels. BMC Physiol 12:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Vu TH, Shipley JM, Bergers G et al (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Acuff HB, Carter KJ, Fingleton B, Gorden DL, Matrisian LM (2006) Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 66:259–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ducharme A, Frantz S, Aikawa M et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20:1681–1689

    Article  CAS  PubMed  Google Scholar 

  18. Vermaelen KY, Cataldo D, Tournoy K et al (2003) Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J Immunol 171:1016–1022

    CAS  PubMed  Google Scholar 

  19. Collins S, Martin TL, Surwit RS, Robidoux J (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav 81:243–248

    Article  CAS  PubMed  Google Scholar 

  20. Ayala JE, Bracy DP, McGuinness OP, Wasserman DH (2006) Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 55:390–397

    Article  CAS  PubMed  Google Scholar 

  21. James DE, Burleigh KM, Kraegen EW (1986) In vivo glucose metabolism in individual tissues of the rat. Interaction between epinephrine and insulin. J Biol Chem 261:6366–6374

    CAS  PubMed  Google Scholar 

  22. Ayala JE, Bracy DP, Julien BM, Rottman JN, Fueger PT, Wasserman DH (2007) Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 56:1025–1033

    Article  CAS  PubMed  Google Scholar 

  23. Steele R, Wall JS, de Bodo RC, Altszuler N (1956) Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol 187:15–24

    CAS  PubMed  Google Scholar 

  24. Kraegen EW, James DE, Jenkins AB, Chisholm DJ (1985) Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol 248:E353–E362

    CAS  PubMed  Google Scholar 

  25. Bonner JS, Lantier L, Hasenour CM, James FD, Bracy DP, Wasserman DH (2013) Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance. Diabetes 62:572–580

    Article  CAS  PubMed  Google Scholar 

  26. Olfert IM, Howlett RA, Tang K et al (2009) Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. J Physiol 587:1755–1767

    Article  CAS  PubMed  Google Scholar 

  27. Tschop MH, Speakman JR, Arch JR et al (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9:57–63

    Article  Google Scholar 

  28. Kaiyala KJ, Morton GJ, Leroux BG, Ogimoto K, Wisse B, Schwartz MW (2010) Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59:1657–1666

    Article  CAS  PubMed  Google Scholar 

  29. Kaiyala KJ, Schwartz MW (2011) Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60:17–23

    Article  CAS  PubMed  Google Scholar 

  30. Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A (2007) Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Investig Ophthalmol Vis Sci 48:4360–4367

    Article  Google Scholar 

  31. Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pompei LM, Steiner ML, Theodoro TR et al (2013) Effect of estrogen therapy on vascular perlecan and metalloproteinases 2 and 9 in castrated rats. Climacteric J Int Menopause Soc 16:147–153

    Article  CAS  Google Scholar 

  33. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167

    Article  CAS  PubMed  Google Scholar 

  34. Lee YS, Li P, Huh JY et al (2011) Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 60:2474–2483

    Article  CAS  PubMed  Google Scholar 

  35. Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78:539–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11:1223–1230

    Article  CAS  PubMed  Google Scholar 

  37. Galis ZS, Muszynski M, Sukhova GK et al (1994) Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75:181–189

    Article  CAS  PubMed  Google Scholar 

  38. Tooke JE, Goh KL (1998) Endotheliopathy precedes type 2 diabetes. Diabetes Care 21:2047–2049

    Article  CAS  PubMed  Google Scholar 

  39. Tooke J (1999) The association between insulin resistance and endotheliopathy. Diabetes Obes Metab 1(Suppl 1):S17–S22

    Google Scholar 

  40. Pinkney JH, Stehouwer CD, Coppack SW, Yudkin JS (1997) Endothelial dysfunction: cause of the insulin resistance syndrome. Diabetes 46(Suppl 2):S9–S13

    Google Scholar 

  41. Kubota T, Kubota N, Kumagai H et al (2011) Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 13:294–307

    Article  CAS  PubMed  Google Scholar 

  42. Braet F, Wisse E (2012) AFM imaging of fenestrated liver sinusoidal endothelial cells. Micron 43:1252–1258

    Article  CAS  PubMed  Google Scholar 

  43. Cogger VC, McNerney GP, Nyunt T et al (2010) Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. J Struct Biol 171:382–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Konstantinopoulos PA, Karamouzis MV, Papatsoris AG, Papavassiliou AG (2008) Matrix metalloproteinase inhibitors as anticancer agents. Int J Biochem Cell Biol 40:1156–1168

    Article  CAS  PubMed  Google Scholar 

  45. Hu J, van den Steen PE, Sang QX, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6:480–498

    Article  CAS  PubMed  Google Scholar 

Download references


We would like to thank the Vanderbilt Translational Pathology Shared Resource for performing the immunohistochemical staining of ColIV, CD31 and vWF. Part of the data from this study has been orally presented at the American Diabetes Association 72nd Scientific Sessions in 2012 and an abstract was published in ‘Orals’, Diabetes, 2012.


This work was supported by National Institutes of Health Grants DK054902 (DHW) and DK059637 (Mouse Metabolic Phenotyping Center; DHW). We would also like to thank the Vanderbilt Diabetes Research and Training Center (DK020593).

Contribution statement

LK, was responsible for the experimental design and researched data, contributed to the discussion and wrote the manuscript. WHM, FDJ and DPB researched data and reviewed the manuscript. DHW was responsible for the experimental design, and reviewed data, contributed to the discussion and reviewed/edited the manuscript. All authors approved the final version of this manuscript.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Li Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(PDF 401 kb)

ESM Fig. 1

(PDF 90 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kang, L., Mayes, W.H., James, F.D. et al. Matrix metalloproteinase 9 opposes diet-induced muscle insulin resistance in mice. Diabetologia 57, 603–613 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: