Advertisement

Theoretical and Applied Genetics

, Volume 97, Issue 5–6, pp 888–895 | Cite as

Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers

  • E. Dirlewanger
  • V. Pronier
  • C. Parvery
  • C. Rothan
  • A. Guye
  • R. Monet

Abstract

 A genetic linkage map of peach [Prunus persica (L.) Batch] was constructed in order to identify molecular markers linked to economically important agronomic traits that would be particularly useful for long-lived perennial species. An intraspecific F2 population was generated from self-pollinating a single F1 plant from a cross between a flat non-acid peach, ‘Ferjalou Jalousia®’ and an acid round nectarine ‘Fantasia’. Mendelian segregations were observed for 270 markers including four agronomic characters (peach/nectarine, flat/round fruit, acid/non-acid fruit, and pollen sterility) and 1 isoenzyme, 50 RFLP, 92 RAPD, 8 inter-microsatellite amplification (IMA), and 115 amplified fragment length polymorphism (AFLP) markers. Two hundred and forty-nine markers were mapped to 11 linkage groups covering 712 centiMorgans (cM). The average density between pairs of markers is 4.5 cM. For the four agronomic characters studied, molecular markers were identified. This map will be used for the detection of QTL controlling fruit quality in peach and, particularly, the acid and sugar content.

Key words Prunus persica Linkage map RFLP RAPD AFLP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • E. Dirlewanger
    • 1
  • V. Pronier
    • 1
  • C. Parvery
    • 1
  • C. Rothan
    • 2
  • A. Guye
    • 1
  • R. Monet
    • 1
  1. 1.INRA, Unité de Recherche sur les Espèces Fruitières et la Vigne, Centre de Bordeaux, BP 81, 33883 Villenave d’Ornon cedex, France Fax: 00 335 56 84 30 83FR
  2. 2.INRA, Station de Physiologie Végétale, Centre de Bordeaux, BP 81, 33883 Villenave d’Ornon cedex, FranceFR

Personalised recommendations