Skip to main content
Log in

A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript


 The bulb onion, Allium cepa L., is a diploid (2n=2x=16) plant with a huge nuclear genome. Previous genetic and cytogenetic analyses have not supported a polyploid origin for onion. We developed a low-density genetic map of morphological markers, randomly amplified polymorphic DNAs (RAPD), and restriction fragment length polymorphisms (RFLP) as a tool for onion improvement and to study the genome organization of onion. A mapping population of 58 F3 families was produced from a single F1 plant from the cross of two partially inbred lines (Brigham Yellow Globe 15-23 and Alisa Craig 43). Segregations were established for restoration of male fertility in sterile cytoplasm, complementary light-red bulb color, 14 RAPDs, 110 RFLPs revealed by 90 anonymous cDNA clones, and 2 RFLPs revealed by a cDNA clone of alliinase, the enzyme responsible for the characteristic Allium flavors. Duplicated RFLP loci were detected by 21% of the clones, of which 53% were unlinked (>30 cM), 5% loosely linked (10–30 cM), and 42% tightly linked (<10 cM). This duplication frequency is less than that reported for paleopolyploids but higher than for diploid species. We observed 40% dominant RFLPs, the highest yet reported among plants. Among duplicated RFLP loci, 19% segregated as two loci each with two codominant alleles, 52% segregated as one locus with codominant alleles and one locus with only a dominant fragment, and 29% segregated as two loci with only dominant fragments. We sequenced cDNAs detecting duplicated RFLPs; 63% showed homology to known gene families (e.g., chlorophyll binding proteins, ubiquitin, or RuBISCO), and 37% were unique clones showing significant homology to known genes of low-copy number or no homology to database sequences. Duplicated RFLPs showing linkage could be due to retroviral-like sequences in adjacent coding regions or intrachromosomal, as opposed to whole genome, duplications. Previous cytological analyses and this genetic map support intrachromosomal duplication as a mechanism contributing to the huge onion genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations


Additional information

Received: 3 July 1997 / Accepted: 8 August 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, J., Bradeen, J., Bark, O. et al. A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor Appl Genet 96, 52–62 (1998).

Download citation

  • Issue Date:

  • DOI: