Skip to main content
Log in

Genomic insights into local adaptation of upland cotton in China and Pakistan

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Different kinship and resistance to cotton leaf curl disease (CLCuD) and heat were found between upland cotton cultivars from China and Pakistan. 175 SNPs and 82 InDels loci related to yield, fiber quality, CLCuD, and heat resistance were identified. Elite alleles found in Pakistani accessions aided local adaptation to climatic condition of two countries.

Abstract

Adaptation of upland cotton (Gossypium hirsutum) beyond its center of origin is expected to be driven by tailoring of the genome and genes to enhance yield and quality in new ecological niches. Here, resequencing of 456 upland cotton accessions revealed two distinct kinships according to the associated country. Fiber quality and lint percentage were consistent across kinships, but resistance to cotton leaf curl disease (CLCuD) and heat was distinctly exhibited by accessions from Pakistan, illustrating highly local adaption. A total of 175 SNP and 82 InDel loci related to yield, fiber quality, CLCuD and heat resistance were identified; among them, only two overlapped between Pakistani and Chinese accessions underscoring the divergent domestication and improvement targets in each country. Loci associated with resistance alleles to leaf curl disease and high temperature were largely found in Pakistani accessions to counter these stresses prevalent in Pakistan. These results revealed that breeding activities led to the accumulation of unique alleles and helped upland cotton become adapted to the respective climatic conditions, which will contribute to elucidating the genetic mechanisms that underlie resilience traits and help develop climate-resilient cotton cultivars for use worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Sequences have been deposited at the National Center for Biotechnology Information (NCBI) under the accession PRJNA901674, PRJNA744011 and PRJNA752720. The genomic variants, genotype data, and phenotype data could be downloaded from http://cotton.zju.edu.cn.

References

  • Briddon RW, Markham PG (2000) Cotton leaf curl virus disease. Virus Res 71:151–159

    Article  CAS  PubMed  Google Scholar 

  • Cai JH, Xie K, Lin L, Qin BX, Chen BS, Meng JR, Liu YL (2010) Cotton leaf curl Multan virus newly reported to be associated with cotton leaf curl disease in China. Plant Pathol 59:794–795

    Article  Google Scholar 

  • Chen G, Du XM (2006) Genetic diversity of source germplasm of Upland cotton in China as determined by SSR marker analysis. Yi Chuan Xue Bao 33:733–745

    CAS  PubMed  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Gong H, Hu Y, Liu CX, Zhou BL, Huang T, Wang YK, Chen SQ, Fang DD, Du XM, Chen H, Chen JD, Wang S, Wang Q, Wan Q, Liu BL, Pan MQ, Chang LJ, Wu HT, Mei GF, Xiang D, Li XH, Cai CP, Zhu XF, Chen ZJ, Han B, Chen XY, Guo WZ, Zhang TZ, Huang XH (2017a) Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 18:33–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, Zhu X, Guo W, Du X, Zhang T (2017b) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Gou M, Balint-Kurti P, Xu M, Yang Q (2023) Quantitative disease resistance: multifaceted players in plant defense. J Integr Plant Biol 65:594–610

    Article  CAS  PubMed  Google Scholar 

  • Han ZG, Hu Y, Tian Q, Cao Y, Si A, Si Z, Zang Y, Xu C, Shen W, Dai F, Liu X, Fang L, Chen H, Zhang T (2020) Genomic signatures and candidate genes of lint yield and fibre quality improvement in Upland cotton in Xinjiang. Plant Biotechnol J 18:2002–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han ZG, Chen H, Cao YW, He L, Si ZF, Hu Y, Lin H, Ning XZ, Li JL, Ma Q, Liu FJ, Zang YH, Zhao T, Fang L, Zhu XF, Zhang TZ (2022) Genomic insights into genetic improvement of upland cotton in the world’s largest growing region. Ind Crops Prod 183:114929

    Article  CAS  Google Scholar 

  • He S, Sun G, Geng X, Gong W, Dai P, Jia Y, Shi W, Pan Z, Wang J, Wang L, Xiao S, Chen B, Cui S, You C, Xie Z, Wang F, Sun J, Fu G, Peng Z, Hu D, Wang L, Pang B, Du X (2021) The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet 53:916–924

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748

    Article  CAS  PubMed  Google Scholar 

  • Huang ZK (2007) Cotton varieties and their genealogy in China. China Agriculture Press, Beijing

    Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinf 8:460

    Article  Google Scholar 

  • Kadota Y, Liebrand TWH, Goto Y, Sklenar J, Derbyshire P, Menke FLH, Torres MA, Molina A, Zipfel C, Coaker G, Shirasu K (2019) Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol 221:2160–2175

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Rokka A, Stolze SC, Harzen A, Meissner L, Wilkens MMT, Hamann T, Toyota M, Nakagami H, Wrzaczek M (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in arabidopsis. Plant Cell 32:1063–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, He X, Luo X, Xu L, Liu L, Min L, Jin L, Zhu L, Zhang X (2014) Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. Plant Physiol 166:2179–2194

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang P, You C, Yu J, Zhang X, Yan F, Ye Z, Shen C, Li B, Kai; G, Nian; L, Thyssen; GN, David DF, Keith L, Zhang X, Wang M, Tu L, (2020) Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. New Phytol 226:1738–1752

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Si Z, Wang G, Shi Z, Chen J, Qi G, Jin S, Han Z, Gao W, Tian Y, Mao Y, Fang L, Hu Y, Chen H, Zhu X, Zhang T (2023) Genomic insights into the genetic basis of cotton breeding in China. Mol Plant 16:662–677

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, Yan Y, Jia Y, Yang J, Pan Z, Gu Q, Li X, Sun Z, Dai P, Liu Z, Gong W, Wu J, Wang M, Liu H, Feng K, Ke H, Wang J, Lan H, Wang G, Peng J, Wang N, Wang L, Pang B, Peng Z, Li R, Tian S, Du X (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813

    Article  CAS  PubMed  Google Scholar 

  • Moutherat C, Tengberg M, Haquet JF, Mille B (2002) First evidence of cotton at Neolithic Mehrgarh, Pakistan: analysis of mineralized fibres from a copper bead. J Archaeol Sci 29:1393–1401

    Article  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Report 11:122–127

    Article  CAS  Google Scholar 

  • Pelsenstein J (1989) PHYLIP:phylogeny inference package(version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108:6893–6898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MU, Khan AQ, Rahmat Z, Iqbal MA, Zafar Y (2017) Genetics and genomics of cotton leaf curl disease, its viral causal agents and whitefly vector: a way forward to sustain cotton fiber security. Front Plant Sci 8:1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman MU, Zafar Y, Zhang T (2021) Cotton precision breeding. Springer

    Book  Google Scholar 

  • Razzaq A, Zafar MM, Ali A, Hafeez A, Yuan Y (2021) Cotton germplasm improvement and progress in Pakistan. J Cotton Res 4:1–14

    Article  Google Scholar 

  • Scheffers BR, De Meester L, Bridge TC, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SH, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JE (2016) The broad footprint of climate change from genes to biomes to people. Science 354:aaf7671

    Article  PubMed  Google Scholar 

  • Shahzad K, Mubeen I, Zhang M, Zhang XX, Wu JY, Xing CZ (2022) Progress and perspective on cotton breeding in Pakistan. J Cotton Res 5:29–46

    Article  CAS  Google Scholar 

  • Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K (2015) Responses of tree species to heat waves and extreme heat events. Plant Cell Environ 38:1699–1712

    Article  PubMed  Google Scholar 

  • Thatcher LF, Cevik V, Grant M, Zhai B, Jones JD, Manners JM, Kazan K (2016) Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. J Exp Bot 67:2367–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian XM (2016) Xinjiang cotton theory and modern cotton technology. Science Press, Beijing

    Google Scholar 

  • Todesco M, Owens GL, Bercovich N, Legare JS, Soudi S, Burge DO, Huang K, Ostevik KL, Drummond EBM, Imerovski I, Lande K, Pascual-Robles MA, Nanavati M, Jahani M, Cheung W, Staton SE, Munos S, Nielsen R, Donovan LA, Burke JM, Yeaman S, Rieseberg LH (2020) Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584:602–607

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49:579–587

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y, Lu L, Wang P, Mo H, Zhang X, Li F (2019) Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun 10:2989

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Sun Y, Li X, Li Y (2022) CYSTEINE-RICH RECEPTOR-LIKE KINASE5 (CRK5) and CRK22 regulate the response to Verticillium dahliae toxins. Plant Physiol 190:714–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Alexander D, Lange K (2011) A quasi-Newton acceleration for high-dimensional optimization algorithms. Stat Comput 21:261–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou YP, Hou XH, Wu Q, Chen JF, Li ZW, Han TS, Niu XM, Yang L, Xu YC, Zhang J, Zhang FM, Tan D, Tian Z, Gu H, Guo YL (2017) Adaptation of Arabidopsis thaliana to the Yangtze River basin. Genome Biol 18:239–250

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China and Pakistan Science Foundation (31661143016) through a project #PSF/BSFC-AGR/P-NIBGE(12), the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, China (2019R01002) and the Fundamental Research Funds for the Central Universities in China (226–2022-00100).

Author information

Authors and Affiliations

Authors

Contributions

T.Z and M.R. conceptualized the research program, designed the experiments, and coordinated the project. Z.H., Z.S., Y.H., L.H., Y.L., A.K., Y.M., S.Z. S.I., M.M., M.I., S.Z. collected the cotton samples and worked on the phenotyping. Z.H., Z.S., Y.H., and S.Z. extracted the high-quality DNA. T.Z., Z.H., Z.S. Y.H., and M.M. analyzed all the data and wrote the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yan Hu or Tianzhen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by David D Fang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6399 KB)

Supplementary file2 (XLSX 7520 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Si, Z., Rahman, Mu. et al. Genomic insights into local adaptation of upland cotton in China and Pakistan. Theor Appl Genet 137, 136 (2024). https://doi.org/10.1007/s00122-024-04624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-024-04624-x

Navigation