Skip to main content
Log in

HvBGlu3, a GH1 β-glucosidase enzyme gene, negatively influences β-glucan content in barley grains

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

HvBGlu3, a β-glucosidase enzyme gene, negatively influences β-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains.

Abstract

Barley grains are rich in β-glucan, an important factor affecting end-use quality. Previously, we identified several stable marker-trait associations (MTAs) and novel candidate genes associated with β-glucan content in barley grains using GWAS (Genome Wide Association Study) analysis. The gene HORVU3Hr1G096910, encoding β-glucosidase 3, named HvBGlu3, is found to be associated with β-glucan content in barley grains. In this study, conserved domain analysis suggested that HvBGlu3 belongs to glycoside hydrolase family 1 (GH1). Gene knockout assay revealed that HvBGlu3 negatively influenced β-glucan content in barley grains. Transcriptome analysis of developing grains of hvbglu3 mutant and the wild type indicated that the knockout of the gene led to the increased expression level of genes involved in starch and sucrose metabolism. Glucose metabolism analysis showed that the contents of many sugars in developing grains were significantly changed in hvbglu3 mutants. In conclusion, HvBGlu3 modulates β-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. The obtained results may be useful for breeders to breed elite barley cultivars for food use by screening barley lines with loss of function of HvBGlu3 in barley breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bamforth CW (1982) Barley β-glucans: their role in malting and brewing. Brew Dig 3:22–35

    Google Scholar 

  • Brunner F, Wirtz W, Rose JKC, Darvill AG, Govers F, Scheel D, Nürnberger T (2002) A β-glucosidase/xylosidase from the phytopathogenic oomycete, Phytophthora infestans. Phytochemistry 59:689–696

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science 311:1940–1942

    Article  CAS  PubMed  ADS  Google Scholar 

  • Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6:724–732

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Collins HM, Kibble NAJ, Smith JA, Shirley NJ, Jobling SA, Henderson M, Singh RR, Pettolino F, Wilson SM, Bird AR, Topping DL, Bacic A, Fincher GB (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure. Plant Biotechnol J 9:117–135

    Article  CAS  PubMed  Google Scholar 

  • Cairns J, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405

    Article  Google Scholar 

  • Cantarel BI, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucl Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jin X, Zhu L, Lu Y, Ma Z, Liu S, Chen X (2020) Glycosyl hydrolase catalyzed glycosylation in unconventional media. Appl Microbiol Biot 104:9523–9534

    Article  CAS  Google Scholar 

  • Clarke B, Liang R, Morell MK, Bird AR, Jenkins CLD, Li Z (2008) Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Funct Integr Genomics 8:211–221

    Article  CAS  PubMed  Google Scholar 

  • Din A, Chughtai MFJ, Khan MRK, Shahzad A, Khaliq A, Nasir MA (2018) Nutritional and functional perspectives of barley β-glucan. Int Food Res J 25:1773–1784

    CAS  Google Scholar 

  • Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D- glucan synthesis in transgenic Arabidopsis. P Natl Acad Sci USA 106:5996–6001

    Article  CAS  ADS  Google Scholar 

  • Feng X, Liu W, Qiu CW, Zeng F, Wang Y, Zhang G, Chen ZH, Wu F (2020) HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol J 18:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fincher GB (2009) Exploring the evolution of (1,3;1,4)-β-d-glucans in plant cell walls: comparative genomics can help! Curr Opin Plant Biol 12:140–147

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gimenez G, Russell J, Aubert MK, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K (2019) Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Sci Rep 9(1):17250

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Garcia-Gimenez G, Barakate A, Smith P, Stephens J, Khor SF, Doblin MS, Hao P, Bacic A, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K (2020) Targeted mutation of barley (1,3;1,4)-β-glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant J 104:1009–1022

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Li M, Xie S, Wu D, Ye L, Zhang G (2021) Identification of genetic loci and candidate genes related to β-glucan content in barley grain by genome-wide association study in international barley core selected collection. Mol Breed 41:1–12

    Article  Google Scholar 

  • Geng L, Li M, Zhang G, Ye L (2022) Barley: a potential cereal for producing healthy and functional foods. Food Quality and Safety 6:fyac012

    Article  Google Scholar 

  • Guillon F, Bouchet B, Jamme F, Robert P, Quéméner B, Barron C, Larré C, Dumas P, Saulnier L (2011) Brachypodium distachyon grain: characterization of endosperm cell walls. J Exp Bot 62:1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Han F, Ullrich SE, Chirat S, Menteur S, Jestin L, Sarrafi A, Hayes PM, Jones BL, Blake TK, Wesenberg DM, Kleinhofs A, Kilian A (1995) Mapping of β-glucan content and β-glucanase activity loci in barley grain and malt. Theor Appl Genet 91:921–927

    Article  CAS  PubMed  Google Scholar 

  • Havrlentova M, Kraic J (2006) Content of β-D-glucan in cereal grains. J Food Nutr Res-Slov 45:97–103

    CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AD, Reilly PJ (2008) Computational analysis of glycoside hydrolase family 1 specificities. Biopolymers 89:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington JM, Booth A, Shirley N, Burton RA, Fincher GB, Waugh R (2014) A genome wide association scan for (1,3;1,4)-β- glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics 15:1–15

    Article  Google Scholar 

  • Hrmova M, Harvey AJ, Wang J, Shirley NJ, Jones GP, Stone BA, Høj PB, Fincher GB (1996) Barley β-D-glucan exohydrolases with β-D-glucosidase activity: purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem 271:5277–5286

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, Burton RA, Biely P, Lahnstein J, Fincher GB (2006) Hydrolysis of (1,4)-β-D-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-β-D-mannan endohydrolase and β-D-mannosidase. Biochem J 399:77–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes J, Grafenauer S (2021) Oat and barley in the food supply and use of beta glucan health claims. Nutrients 13:2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izydorczyk MS, Storsley J, Labossiere D, MacGregor AW, Rossnagel BG (2000) Variation in total and soluble β-glucan content in hulless barley: effects of thermal, physical, and enzymic treatments. J Agric Food Chem 48:982–989

    Article  CAS  PubMed  Google Scholar 

  • Jacob JP, Pescatore AJ (2014) Barley β-glucan in poultry diets. Ann Transl Med 2:20

    PubMed  PubMed Central  Google Scholar 

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Narwal S, Venkatesh K, Verma RPS, Singh GP (2022) Grain beta-glucan as selection criteria for wort beta-glucan in malt barley improvement. J Cereal Sci 107:103519

    Article  CAS  Google Scholar 

  • Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed β-glucosidase. J Biol Chem 270:15789–15797

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler FW (2007) Carbohydrates as renewable raw materials: a major challenge of green chemistry. Willey, pp 23–63

    Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21

    Article  Google Scholar 

  • Marcotuli I, Colasuonno P, Cutillo S, Simeone R, Blanco A, Gadaleta A (2019) β-glucan content in a panel of Triticum and Aegilops genotypes. Genet Resour Crop Ev 66:897–907

    Article  CAS  Google Scholar 

  • McCleary BV, DeVries JW, Rader JI, Cohen G, Prosky L, Mugford DC, Champ M, Okuma K (2012) Determination of insoluble, soluble, and total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study. J Aoac Int 95:824–844

    Article  CAS  PubMed  Google Scholar 

  • Munck L, Møller B, Jacobsen S, Søndergaard I (2004) Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1→3,1→4)-β-glucan in barley. J Cereal Sci 40:213–222

    Article  CAS  Google Scholar 

  • Opassiri R, Pomthong B, Onkoksoong T, Akiyama T, Esen A, Ketudat Cairns JR (2006) Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. Bmc Plant Biol 6:1–19

    Article  Google Scholar 

  • Opassiri R, Pomthong B, Akiyama T, Nakphaichit M, Onkoksoong T, Ketudat Cairns M, Ketudat Cairns JR (2007) A stress-induced rice (Oryza sativa L.) β-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. Biochem J 408:241–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oziel A, Hayes PM, Chen FQ, Jones B (1996) Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed 115:43–51

    Article  CAS  Google Scholar 

  • Panozzo JF, Eckermann PJ, Mather DE, Moody DB, Black CK, Collins HM, Barr AR, Lim P, Cullis BR (2007) QTL analysis of malting quality traits in two barley populations. Aust J Agric Res 58:858–866

    Article  CAS  Google Scholar 

  • Perera WNU, Abdollahi MR, Zaefarian F, Wester TJ, Ravindran V (2022) Barley, an undervalued cereal for poultry diets: limitations and opportunities. Animals 12:2525

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathya TA, Khan M (2014) Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry. J Food Sci 79:2149–2156

    Article  Google Scholar 

  • Szyjanowicz PMJ, McKinnon I, Taylor NG, Gardiner J, Jarvis MC, Turner SR (2004) The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J 37:730–740

    Article  CAS  PubMed  Google Scholar 

  • Trafford K, Haleux P, Henderson M, Parker M, Shirley NJ, Tucker MR, Fincher GB, Burton RA (2013) Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. J Exp Bot 64:5033–5047

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ye L, Huang Y, Li M, Li C, Zhang G (2016) The chemical components in malt associated with haze formation in beer. J Inst Brew 122:524–529

    Article  CAS  Google Scholar 

  • Ye L, Wang Y, Long L, Luo H, Shen Q, Broughton S, Wu D, Shu X, Dai F, Li C, Zhang G (2019) A trypsin family protein gene controls tillering and leaf shape in barley. Plant Physiol 181:701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Zhang Q, Quan J, Zheng Q, Xi W (2016) Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem 205:112–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Kabin Xie from Huazhong Agricultural University for providing the pRGEB32 plasmid vector and the technical support in sugar determination from MetWare Co., Ltd. (http://www.metware.cn/, Wuhan, China)

Funding

This work was funded by the Key Research Foundation of Science and Technology Department of Zhejiang Province of China (2021C02057, 2020C02002, 2021C02064-3), the National Natural Science Foundation of China (32171917), the Science and Technology Program of Zhejiang Province of China (LGN20C130007) and China Agriculture Research System (CARS-05).

Author information

Authors and Affiliations

Authors

Contributions

GZ and LY developed the experimental design and conceived the project. LG, ML, SX, XH, HW and NS performed the experiments. LG, ML and SX conducted and validated the phenotypic experiments. LG, LY and GZ wrote the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Lingzhen Ye.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Kevin Smith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, L., Li, M., Xie, S. et al. HvBGlu3, a GH1 β-glucosidase enzyme gene, negatively influences β-glucan content in barley grains. Theor Appl Genet 137, 14 (2024). https://doi.org/10.1007/s00122-023-04517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04517-5

Navigation