Skip to main content
Log in

Sr65: a widely effective gene for stem rust resistance in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Sr65 in chromosome 1A of Indian wheat landrace Hango-2 is a potentially useful all-stage resistance gene that currently protects wheat from stem rust in Australia, India, Africa and Europe.

Abstract

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), threatened global wheat production with the appearance of widely virulent races that included TTKSK and TTRTF. Indian landrace Hango-2 showed resistance to Pgt races in India and Australia. Screening of a Hango-2/Avocet ‘S’ (AvS) recombinant inbred line population identified two stem rust resistance genes, a novel gene (temporarily named as SrH2) from Hango-2 and Sr26 from AvS. A mapping population segregating for SrH2 alone was developed from two recombinant lines. SrH2 was mapped on the short arm of chromosome 1A, where it was flanked by KASP markers KASP_7944 (proximal) and KASP_12147 (distal). SrH2 was delimited to an interval of 1.8–2.3 Mb on chromosome arm 1AS. The failure to detect candidate genes through MutRenSeq and comparative genomic analysis with the pan-genome dataset indicated the necessity to generate a Hango-2 specific assembly for detecting the gene sequence linked with SrH2 resistance. MutRenSeq however enabled identification of SrH2-linked KASP marker sunCS_265. Markers KASP_12147 and sunCS_265 showed 92% and 85% polymorphism among an Australian cereal cultivar diversity panel and can be used for marker-assisted selection of SrH2 in breeding programs. The effectiveness of SrH2 against Pgt races from Europe, Africa, India, and Australia makes it a valuable resource for breeding stem rust-resistant wheat cultivars. Since no wheat-derived gene was previously located in chromosome arm 1AS, SrH2 represents a new locus and named as SR65.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets of raw Illumina sequences generated in the study were deposited to the National Center for Biotechnology Information (NCBI) and can be accessed in the Short Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) as accession number PRJNA993780. All plant materials analyzed during the study are available from the corresponding author/s by request.

References

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. (http://www.bioinformatics.babraham.ac.uk/projects/fastqc)

  • Athiyannan N, Abrouk M, Boshoff WHP, Cauet S, Rodde N, Kudrna D, Mohammed N, Bettgenhaeuser J, Botha KS, Derman SS, Wing RA, Prins R, Krattinger SG (2022) Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat Genet 54:227–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babiker EM, Gordon TC, Chao S, Newcomb M, Rouse MN, Jin Y, Wanyera R, Acevedo M, Brown-Guedira G, Williamson S, Bonman JM (2015) Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor Appl Genet 128:605–612

    Article  CAS  PubMed  Google Scholar 

  • Bansal UK, Arief VN, DeLacy IH, Bariana HS (2013) Exploring wheat landraces for rust resistance using a single marker scan. Euphytica 194:219–233

    Article  Google Scholar 

  • Bansal UK, Kazi AG, Singh B, Hare RA, Bariana HS (2014) Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breed 33:51–59

    Article  CAS  Google Scholar 

  • Bansal UK, Muhammad S, Forrest KL, Hayden MJ, Bariana HS (2015) Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theor Appl Genet 128:2113–2119

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  Google Scholar 

  • Chen S, Rouse MN, Zhang W, Zhang X, Guo Y, Briggs J, Dubcovsky J (2020) Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol 225:948–959

    Article  CAS  PubMed  Google Scholar 

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H (2021) Twelve years of SAMtools and BCFtools. GigaScience 10:giab008

  • De Coster W, Weissensteiner MH, Sedlazeck FJ (2021) Towards population-scale long-read sequencing. Nat Rev Genet 22:572–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Gessese M, Bariana H, Wong D, Hayden M, Bansal U (2019) Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis 103:1166–1171

    Article  CAS  PubMed  Google Scholar 

  • Hiebert C, Thomas J, McCallum B (2005) Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theor Appl Genet 110:1453–1457

    Article  CAS  PubMed  Google Scholar 

  • Iquebal MA, Sharma P, Jasrotia RS, Jaiswal S, Kaur A, Saroha M, Angadi UB, Sheoran S, Singh R, Singh GP, Rai A, Tiwari R, Kumar D (2019) RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep 9:13917

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Kanwal M, Qureshi N, Gessese M, Forrest K, Babu P, Bariana H, Bansal U (2021) An adult plant stripe rust resistance gene maps on chromosome 7A of Australian wheat cultivar Axe. Theor Appl Genet 134:2213–2220

    Article  CAS  PubMed  Google Scholar 

  • Kolodziej MC, Singla J, Sánchez-Martín J, Zbinden H, Šimková H, Karafiátová M, Doležel J, Gronnier J, Poretti M, Glauser G, Zhu W, Köster P, Zipfel C, Wicker T, Krattinger SG, Keller B (2021) A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nat Commun 12:956

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kosgey ZC, Edae EA, Dill-Macky R, Jin Y, Bulbula WD, Gemechu A, Macharia G, Bhavani S, Randhawa MS, Rouse MN (2021) Mapping and validation of stem rust resistance loci in spring wheat line CI 14275. Front Plant Sci. https://doi.org/10.3389/fpls.2020.609659

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Bhardwaj SC, Gangwar OP, Sharma A, Qureshi N, Kumaran VV, Khan H, Prasad P, Miah H, Singh GP, Sharma K, Verma H, Forrest KL, Trethowan RM, Bariana HS, Bansal UK (2021) Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theor Appl Genet 134:849–858

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin G, Chen H, Tian B, Sehgal SK, Singh L, Xie J, Rawat N, Juliana P, Singh N, Shrestha S, Wilson DL, Shult H, Lee H, Schoen AW, Tiwari VK, Singh RP, Guttieri MJ, Trick HN, Poland J, Bowden RL, Bai G, Gill B, Liu S (2022) Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nat Commun 13:3044

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ling HQ, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJT, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, McGuire PE, Liu S, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan L, Wang Z, Xia Z, Xiao L, Anderson OD, Ouyang S, Liang Y, Zimin AV, Pertea G, Qi P, Bennetzen JL, Dai X, Dawson MW, Müller HG, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu FH, Bevan MW, Leroy P, Li P, You FM, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvořák J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Till B, Periyannan S, Yu G, Wulff BBH, Lagudah E (2017) Generation of loss-of-function mutants for wheat rust disease resistance gene cloning. In: Periyannan S (ed) Wheat Rust diseases; methods in molecular biology, vol 1659. Springer, Berlin, pp 199–205

    Chapter  Google Scholar 

  • Mago R, Chen C, Xia X, Whan A, Forrest K, Basnet BR, Perera G, Chandramohan S, Randhawa M, Hayden M, Bansal U, Huerta-Espino J, Singh RP, Bariana H, Lagudah E (2022) Adult plant stem rust resistance in durum wheat Glossy Huguenot: mapping, marker development and validation. Theor Appl Genets 135:1541–1550

    Article  CAS  Google Scholar 

  • Margarido G, de SOuza A, Garcia A (2007) OneMap: software for genetic mapping in outcrossing species

  • McIntosh R, Wellings C, Park R (1995) Wheat Rusts: an atlas of resistance genes. CSIRO Publishing, Clayton

    Book  Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan C-KK, Visendi P, Lai K, Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Negash T, Edae EA, Tilahun L, Anderson JA, Rouse MN, Bajgain P (2022) Genome-wide association mapping for field and seedling resistance to the emerging Puccinia graminis f. sp. tritici race TTRTF in wheat. Plant Genome 15:20274

    Article  Google Scholar 

  • Nsabiyera V, Bariana HS, Qureshi N, Wong D, Hayden MJ, Bansal UK (2018) Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet 131:1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall DS, Jin Y, Mergoum M, Lowe I, Dubcovsky J (2010) Genotyping of U.S. Wheat germplasm for presence of stem rust resistance genes Sr24, Sr36 and Sr1RSAmigo. Crop Sci 50:668–675

    Article  CAS  Google Scholar 

  • Pakeerathan K, Bariana H, Qureshi N, Wong D, Hayden M, Bansal U (2019) Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet 132:3169–3176

    Article  CAS  PubMed  Google Scholar 

  • Park R (2016) The wheat stem rust pathogen in Australia - pathogenic variation and pathotype designation. The University of Sydney, Plant Breeding Institute Cereal Rust Report, vol 14

  • Patpour M, Hovmøller MS, Rodriguez-Algaba J, Randazzo B, Villegas D, Shamanin VP, Berlin A, Flath K, Czembor P, Hanzalova A, Sliková S, Skolotneva ES, Jin Y, Szabo L, Meyer KJG, Valade R, Thach T, Hansen JG, Justesen AF (2022) Wheat stem rust back in europe: Diversity, prevalence and impact on host resistance. Front Plant Sci 13:882440

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad P, Khan H, Bhardwaj SC, Savadi S, Gangwar Op, Kumar S (2021) Practical manual on protocols and methodologies in wheat rusts research. Indian Council of Agricultural Research Manual

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis 84:203–203

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Bariana HS, Zhang P, McIntosh R, Bansal UK, Wong D, Hayden MJ, Dubcovsky J, Shankar M (2017) Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis 102:413–420

    Article  PubMed  Google Scholar 

  • Qureshi N, Bariana H, Kumran VV, Muruga S, Forrest KL, Hayden MJ, Bansal U (2018a) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet 131:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Kandiah P, Gessese MK, Nsabiyera V, Wells V, Babu P, Wong D, Hayden M, Bariana H, Bansal U (2018b) Development of co-dominant KASP markers co-segregating with Ug99 effective stem rust resistance gene Sr26 in wheat. Mol Breed 38:97

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015a) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015b) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randhawa M, Bansal U, Valarik M, Klocova B, Dolezel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324

    Article  CAS  PubMed  Google Scholar 

  • Saxesena RR, Mishra VK, Chand R, Kumar U, Chowdhury AK, Bhati J, Budhlakoti N, Joshi AK (2022) SNP discovery using BSR-Seq approach for spot blotch resistance in wheat (Triticum aestivum L.) an essential crop for food security. Front Genet 13:859676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahin A, Mazrou YSA, Omara RI, Hermas G, Gad M, Mabrouk OI, Abd-Elsalam KA, Nehela Y (2022) Geographical correlation and genetic diversity of newly emerged races within the Ug99 lineage of stem rust pathogen, Puccinia graminis f. sp. tritici, in different wheat-producing areas. J Fungi 8:1041

    Article  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Ann Rev Phytopathol 49:465–481

    Article  CAS  Google Scholar 

  • Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, Lagudah ES, Wulff BBH (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652–655

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F (2020) The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18:1354–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The UniProt C (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51:D523–D531

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93(1):77–78

    Article  CAS  Google Scholar 

  • Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri JN, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, Venturini L, Bevan M, Clavijo B, Koo D-H, Ens J, Wiebe K, N’Diaye A, Fritz AK, Gutwin C, Fiebig A, Fosker C, Fu BX, Accinelli GG, Gardner KA, Fradgley N, Gutierrez-Gonzalez J, Halstead-Nussloch G, Hatakeyama M, Koh CS, Deek J, Costamagna AC, Fobert P, Heavens D, Kanamori H, Kawaura K, Kobayashi F, Krasileva K, Kuo T, McKenzie N, Murata K, Nabeka Y, Paape T, Padmarasu S, Percival-Alwyn L, Kagale S, Scholz U, Sese J, Juliana P, Singh R, Shimizu-Inatsugi R, Swarbreck D, Cockram J, Budak H, Tameshige T, Tanaka T, Tsuji H, Wright J, Wu J, Steuernagel B, Small I, Cloutier S, Keeble-Gagnère G, Muehlbauer G, Tibbets J, Nasuda S, Melonek J, Hucl PJ, Sharpe AG, Clark M, Legg E, Bharti A, Langridge P, Hall A, Uauy C, Mascher M, Krattinger SG, Handa H, Shimizu KK, Distelfeld A, Chalmers K, Keller B, Mayer KFX, Poland J, Stein N, McCartney CA, Spannagl M, Wicker T, Pozniak CJ (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing C, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

  • Winfield MO, Allen AM, Wilkinson PA, Burridge AJ, Barker GLA, Coghill J, Waterfall C, Wingen LU, Griffiths S, Edwards KJ (2018) High-density genotyping of the A.E. Watkins collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnol J 16:165–175

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zeng Q, Wang Q, Liu S, Yu S, Mu J, Huang S, Sela H, Distelfeld A, Huang L, Han D, Kang Z (2018) SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor Appl Genet 131:1481–1496

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Matny O, Champouret N, Steuernagel B, Moscou MJ, Hernández-Pinzón I, Green P, Hayta S, Smedley M, Harwood W, Kangara N, Yue Y, Gardener C, Banfield MJ, Olivera PD, Welchin C, Simmons J, Millet E, Minz-Dub A, Ronen M, Avni R, Sharon A, Patpour M, Justesen AF, Jayakodi M, Himmelbach A, Stein N, Wu S, Poland J, Ens J, Pozniak C, Karafiátová M, Molnár I, Doležel J, Ward ER, Reuber TL, Jones JDG, Mascher M, Steffenson BJ, Wulff BBH (2022) Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 13:1607

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yu G, Matny O, Gourdoupis S, Rayapuram N, Aljedaani FR, Wang YL, Nürnberger T, Johnson R, Crean EE, Saur IML, Gardener C, Yue Y, Kangara N, Steuernagel B, Hayta S, Smedley M, Harwood W, Patpour M, Wu S, Poland J, Jones JDG, Reuber TL, Ronen M, Sharon A, Rouse MN, Xu S, Holušová K, Bartoš J, Molnár I, Karafiátová M, Hirt H, Blilou I, Jaremko Ł, Doležel J, Steffenson BJ, Wulff BBH (2023) The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat Genet 55:921–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hewitt TC, Boshoff WHP, Dundas I, Upadhyaya N, Li J, Patpour M, Chandramohan S, Pretorius ZA, Hovmøller M, Schnippenkoetter W, Park RF, Mago R, Periyannan S, Bhatt D, Hoxha S, Chakraborty S, Luo M, Dodds P, Steuernagel B, Wulff BBH, Ayliffe M, McIntosh RA, Zhang P, Lagudah ES (2021) A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat Commun 12:3378

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo M-C (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chin Spring Genome Assem Plant J 107:303–314

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Professor Robert McIntosh at the University of Sydney’s Plant Breeding Institute for reading through the manuscript and providing valuable comments.

Funding

MN received funding through a Francis Henry Loxton Stipend and Irvine Armstrong Watson Scholarships provided by the Sydney Institute of Agriculture, University of Sydney. The Postgraduate Research Supplementary Scholarship was provided by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). We thank Grains Research and Development Corporation (GRDC) Australia for financial support of the Australian Cereal Rust Control Program and the Australian Centre for International Agricultural Research for financial support through an Indo-Australian project.

Author information

Authors and Affiliations

Authors

Contributions

MN, HM, HB, UB and SP developed the mapping population and screened the plant material with Australian Pgt races. MN, HM, HB and UB generated the mutant population. MN and CC conducted the bioinformatic analyses of the RNASeq and MutRENSeq datasets. MP, CS and MH performed the screening of the plant materials with African Pgt race TTKSK and the European Pgt race TTRTF. SK, PP, OPG and SB conducted screening of Hango-2 with Indian Pgt races. KF conducted bulk-segregant analysis using the 90 K iSelect wheat SNP array. MN conducted marker screening of the mapping population and Australian wheat panel and comparative genomic analysis of SrH2 locus. MN, HB, UB and SP wrote the initial draft whereas the remaining authors read the manuscript and provided revisions.

Corresponding authors

Correspondence to Sambasivam Periyannan or Urmil Bansal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Aimin Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 19 kb)

Supplementary file2 (XLSX 12 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norman, M., Chen, C., Miah, H. et al. Sr65: a widely effective gene for stem rust resistance in wheat. Theor Appl Genet 137, 1 (2024). https://doi.org/10.1007/s00122-023-04507-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04507-7

Navigation