Skip to main content
Log in

Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish (Raphanus sativus L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Two major QTLs for bolting time in radish were mapped to chromosome 02 and 07 in a 0.37 Mb and 0. 52 Mb interval, RsFLC1 and RsFLC2 is the critical genes.

Abstract

Radish (Raphanus sativus L.) is an important vegetable crop of Cruciferae. The premature bolting and flowering reduces the yield and quality of the fleshy root of radish. However, the molecular mechanism underlying bolting and flowering in radish remains unknown. In YZH (early bolting) × XHT (late bolting) F2 population, a high-density genetic linkage map was constructed with genetic distance of 2497.74 cM and an average interval of 2.31 cM. A total of nine QTLs for bolting time and two QTLs for flowering time were detected. Three QTLs associated with bolting time in radish were identified by QTL-seq using radish GDE (early bolting) × GDL (late bolting) F2 population. Fine mapping narrowed down qBT2 and qBT7.2 to an 0.37 Mb and 0.52 Mb region on chromosome 02 and 07, respectively. RNA-seq and qRT-PCR analysis showed that RsFLC1 and RsFLC2 were the candidate gene for qBT7.2 and qBT2 locus, respectively. Subcellular localization exhibited that RsFLC1 and RsFLC2 were mainly expressed in the nucleus. A 1856-bp insertion in the first intron of RsFLC1 was responsible for bolting time. Overexpression of RsFLC2 in Arabidopsis was significantly delayed flowering. These findings will provide new insights into the exploring the molecular mechanism of late bolting and promote the marker-assisted selection for breeding late-bolting varieties in radish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during the course of this study are included in the article. The transcriptome sequencing reads have been deposited into the NCBI sequence read archive (SRA) under accession no. PRJNA1020617. All data and research materials or this study are available upon reasonable request from the corresponding author.

References

  • Abuyusuf M, Nath UK, Kim HT, Islam MR, Park JI, Nou IS (2019) Molecular markers based on sequence variation in BoFLC1.C9 for characterizing early- and late-flowering cabbage genotypes. BMC Genet 20:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Attitalla IH (2011) Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pak J Biol Sci 14:998–999

    Article  PubMed  Google Scholar 

  • Blümel M, Dally N, Jung C (2015) Flowering time regulation in crops-what did we learn from Arabidopsis? Curr Opin Biotechnol 32:121–129

    Article  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  ADS  Google Scholar 

  • Coustham V, Li P, Strange A, Lister C, Song J, Dean C (2012) Quantitative modulation of polycomb silencing underlies natural variation in vernalization. Science 337:584–587

    Article  CAS  PubMed  ADS  Google Scholar 

  • Crocco CD, Locascio A, Escudero CM, Alabadí D, Blázquez MA, Botto JF (2015) The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nat Commun 6:6202

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ding L, Wang S, Song ZT, Jiang Y, Han JJ, Lu SJ, Li L, Liu JX (2018) Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis. Cell Rep 25:1718–1728

    Article  CAS  PubMed  Google Scholar 

  • Gangappa SN, Botto JF (2014) The BBX family of plant transcription factors. Trends Plant Sci 19:460–470

    Article  CAS  PubMed  Google Scholar 

  • Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, Brandt R, Wenkel S (2016) MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis. PLoS Genet 12:e1005959

    Article  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Article  CAS  PubMed  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  ADS  Google Scholar 

  • Jeong Y, Kim N, Ahn BO, Oh M, Chung W, Chung H, Jeong S, Lim K, Hwang Y, Kim G, Baek S, Choi S, Choi D, Choi SW, Choi SH, Kwon SJ, Jin M, Seol YJ, Chae WB, Choi KJ, Park BS, Yu HJ, Mun JH (2016) Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet 129:1357–1372

    Article  CAS  PubMed  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Michaels R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kim DH, Sung S (2017) Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell 40:302–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita Y, Motoki K, Motoki M (2023) Upregulation of tandem duplicated BoFLC1 genes is associated with the non-flowering trait in Brassica oleracea var. capitate. Theor Appl Genet 136:41

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto N, Yui S, Nishikawa K, Takahata Y, Yokoi S (2014) A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196:213–223

    Article  CAS  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Li P, Tao Z, Dean C (2015) Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR. Genes Dev 29:696–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Peng A, Yang J, Zheng S, Li Z, Mu Y, Chen L, Si J, Ren X, Song H (2022) A 215-bp indel at intron I of BoFLC2 affects flowering time in Brassica oleracea var. capitatacapitate during vernalization. Theor Appl Genet 135:2785–2797

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Luo X, Peng X, Jin Y, Tan H, Wu L, Li J, Pei Y, Xu X, Zhang W (2023) Development of SNP and InDel markers by genome resequencing and transcriptome sequencing in radish (Raphanus sativus L.). BMC Genomics 24:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo X, Xu L, Wang Y, Dong J, Chen Y, Tang M, Fan L, Zhu Y, Liu L (2020) An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). Plant Biotechnol J 18:274–286

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Chhapekar SS, Rameneni JJ, Kim S, Gan TH, Choi SR, Lim YP (2021) Identification of QTLs and candidate genes related to flower traits and bolting time in radish (Raphanus sativus L.). Agronomy 11:1623

    Article  CAS  Google Scholar 

  • Mateos JL, Madrigal P, Tsuda K, Tsuda V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Krajewski G (2015) Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol 16:31

    Article  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nefissi R, Natsui Y, Miyata K, Oda A, Hase Y, Nakagawa M, Ghorbel A, Mizoguchi T (2011) Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light. J Exp Bot 62:2731–2744

    Article  CAS  PubMed  Google Scholar 

  • Nie S, Li C, Wang Y, Xu L, Muleke EM, Tang M, Sun X, Liu L (2016) Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in radish (Raphanus sativus L.). Front Plant Sci 7:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Pien S, Fleury D, Mylne JS, Crevillen P, Inzé D, Avramova Z, Avramova C, Avramova U (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20:580–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). PNAS 97:3753–3758

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Song J, Guan Z, Hu J, Guo C, Yang Z, Wang S, Wang D, Wang B, Lu S, Zhou R, Xie W, Cheng Y, Zhang Y, Liu K, Yang Q, Yang L, Guo L (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Su T, Wang W, Li P, Zhang B, Li P, Xin X, Sun H, Yu Y, Zhang D, Zhao X, Wen C, Zhou G, Wang Y, Zheng H, Yu S, Zhang F (2018) A genomic variation map provides insights into the genetic basis of spring Chinese cabbage (Brassica rapa ssp. pekinensis) selection. Mol Plant 11:1360–1376

    Article  CAS  PubMed  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  CAS  PubMed  ADS  Google Scholar 

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462:799–802

    Article  CAS  PubMed  ADS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Luo X, Lu J, Wu L, Li Y, Jin Y, Peng X, Xu X, Li J, Zhang W (2023) The long noncoding RNA LINC15957 regulates anthocyanin accumulation in radish. Front Plant Sci 14:1139143

    Article  PubMed  PubMed Central  Google Scholar 

  • Teper-Bamnolker P, Samach A (2005) The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17:2661–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines BC, Thines Y, Duarte MI, Duarte FG (2014) The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J Exp Bot 65:1141–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Zheng H, Zhang F, Wang S, Ji X, Xu C, He Y, Ding Y (2019) PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR. Sci Adv 5:eaau7246

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Tripathi P, Carvallo M, Hamilton EE, Preuss S, Kay SA (2017) Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. PNAS 114:172–177

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tudor EH, Jones DM, He Z, Bancroft I, Trick M, Wells R, Irwin JA, Dean C (2020) QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol J 18(12):2466–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL4.0: software for the calculation of QTL positions on genetic maps. Plant Research International, Wagenigen

    Google Scholar 

  • Wang Q, Zhang Y, Zhang L (2018) A naturally occurring insertion in the RsFLC2 gene associated with late-bolting trait in radish (Raphanus sativus L.). Mol Breed 38:1–12

    Article  Google Scholar 

  • Wu J, Wei K, Cheng F, Li S, Wang Q, Zhao J, Bonnema G, Wang X (2012) A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12:1–9

    Article  ADS  Google Scholar 

  • Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64:4503–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wang Y, Dong J, Zhang W, Tang M, Zhang W, Wang K, Chen Y, Zhang X, He Q, Zhang X, Wang K, Wang L, Ma Y, Xia K, Liu L (2023) A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. Plant Biotechnol J 21:990–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav A, Ravindran N, Singh D, Rahul PV, Datta S (2020) Role of Arabidopsis BBX proteins in light signaling. J Plant Biochem 29:623–635

    Article  CAS  Google Scholar 

  • Yi G, Park H, Kim JS, Chae WB, Park S, Huh JH (2014) Identification of three FLOWERING LOCUS C genes responsible for vernalization response in radish (Raphanus sativus L.). Hortic Environ Biotechnol 55:548–556

    Article  CAS  Google Scholar 

  • Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW (2009) A naturally occurring splicing site mutation in the brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60:1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yue Z, Mei S, Qiu Y, Yang X, Chen X, Cheng F, Wu Z, Sun Y, Jing Y, Liu B, Shen D, Wang H, Cui N, Duan Y, Wu J, Wang J, Gan C, Wang J, Wang X, Li X (2015) A de novo genome of a Chinese radish cultivar. Hortic Plant J 1:155–164

    Google Scholar 

  • Zhao Z, Yu Y, Meyer D, Wu C, Shen WH (2005) Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3K36. Nat Cell Biol 7:1256–1260

    Article  PubMed  Google Scholar 

  • Zhao J, Kulkarni V, Liu N, Pino Del Carpio D, Bucher J, Bonnema G (2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot 61:1817–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Ruhong Xu from the School of Agriculture of Guizhou University support for providing the phenotypic and genotypic data analysis.

Funding

This study was funded by the National Natural Science Foundation of China (31960598), Guizhou Provincial Department of Agriculture and Rural Affairs Project (Qiankehe Platform Talent-CXTD [2022]003), Key core technology research project for mountainous agriculture in Guizhou Province (GZNYGJHX-2023013), Platform construction project of Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province (Qian Jiao Ji [2022] No. 040).

Author information

Authors and Affiliations

Authors

Contributions

YYJ and XBL have prepared a draft manuscript; YYJ conducted experiments; YDL, XP, GQY and LJW participated in the field experiment. XBL and WPZ designed experiments; XHX, YP, WL assisted in the experiment.

Corresponding author

Correspondence to Wanping Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The authors declare that this study complies with applicable Chinese law.

Additional information

Communicated by Richard G.F. Visser.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1204 KB)

Supplementary file2 (XLSX 3340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Luo, X., Li, Y. et al. Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish (Raphanus sativus L.). Theor Appl Genet 137, 4 (2024). https://doi.org/10.1007/s00122-023-04503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04503-x

Navigation