Skip to main content
Log in

A recessive LRR-RLK gene causes hybrid breakdown in cotton

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

An LRR-RLK gene causing interspecific hybrid breakdown between Gossypium. anomalum and G. hirsutum was identified by deploying a map-based cloning strategy.

Abstract

The self-destructing symptoms of hybrid incompatibility in most cases are attributed to autoimmunity. The cloning of genes responsible for hybrid incompatibility in cotton is helpful to clarify the mechanisms underlying hybrid incompatibility and can break the barriers in distant hybridization. In this study, a temperature-dependent lethality was identified in CSSL11-9 (chromosome segment substitution line) with Gossypium anomalum chromosome segment on chromosome A11. Transcriptome analysis showed the differentially expressed genes related to autoimmune responses were highly enriched, suggesting that expression of CSSL11-9 plant lethal gene activated autoimmunity in the absence of any pathogen or external stimulus, inducing programmed cell death (PCD) and causing a lethal phenotype. The lethal phenotype was controlled by a pair of recessive genes and then fine mapped between JAAS3191-JAAS3050 interval, which covered 63.87 kb in G. hirsutum genome and 98.66 kb in G. anomalum. We demonstrated that an LRR-RLK gene designated as hybrid breakdown 1 (GoanoHBD1) was the causal gene underlying this locus for interspecific hybrid incompatibility between G. anomalum and G. hirsutum. Silencing this LRR-RLK gene could restore CSSL11-9 plants from a lethal to a normal phenotype. Our findings provide new insights into reproductive isolation and may benefit cotton breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data used in the current study are included in this published article or are available from the corresponding author on reasonable request.

References

  • Alcázar R, García AV, Kronholm I, de Meaux J, Koornneef M, Parker JE, Reymond M (2010) Natural variation at strubbelig receptor kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nat Genet 42:1135–1140

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barragan AC, Collenberg M, Wang J, Lee RRQ, Cher WY, Rabanal FA, Ashkenazy H, Weigel D, Chae E (2021) A truncated singleton NLR causes hybrid necrosis in Arabidopsis thaliana. Mol Biol Evol 38(2):557–574

    CAS  PubMed  Google Scholar 

  • Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8(5):382–393

    CAS  PubMed  Google Scholar 

  • Bomblies K, Lempe P, Epple N, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PloS Biol 5(9):e236

    PubMed  PubMed Central  Google Scholar 

  • Chae E, Bomblies K, Kim S, Karelina D, Zaidem M, Ossowski S, Martin-Pizarro C, Laitinen RA, Rowan BA, Tenenboim H, Lechner S, Demar M, Habring-Muller A, Lanz C, Ratsch G, Weigel D (2014) Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159(6):1341–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Shan JX, Zhu MZ, Shi M, Gao JP, Lin HX (2013) Genetic and physiological analysis of a novel type of interspecific hybrid weakness in rice. Mol Plant 6(3):716–728

    CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Lin YS, Shen JB, Shan JX, Qi P, Shi M, Zhu MZ, Huang XH, Feng Q, Han B, Jiang L, Gao JP, Lin HX (2014) A two-locus interaction causes interspecific hybrid weakness in rice. Nat Commun 5:3357

    PubMed  Google Scholar 

  • Cheng YT, Zhang L, He SY (2019) Plant-microbe interactions facing environmental challenge. Cell Host Microbe 26(2):183–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinchilla D, Shan L, He P, de Vries S, Kemmerling B (2009) One for all: the receptor-associated kinase BAK1. Trends Plant Sci 14:535–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Fang L, Zhu X, Zhou B, Zhang T (2019) A CC-NBS-LRR gene induces hybrid lethality in cotton. J Exp Bot 70(19):5145–5156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Britt RC Jr, Shan L, He P (2011) Agrobacterium mediated virus-induced gene silencing assay in cotton. J vis Exp 54:e2938

    Google Scholar 

  • Grover CE, Gallagher JP, Jareczek JJ, Page JT, Udall JA, Gore MA, Wendel JF (2015) Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol 92:45–52

    PubMed  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman M, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51(4):739–748

    CAS  PubMed  Google Scholar 

  • Hutchinson J (1932) The genetics of cotton. Part VII. ‘Crumpled’: a new dominant in Asiatic cottons produced by complementary factors. J Genet 25:281–291

    Google Scholar 

  • Jeuken M, Zhang N, McHale L, McHale L, Pelgrom K, den Boer E, Lindhout P, Michelmore R, Visser R, Niks R (2009) Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell 21:3368–3378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Xue S, Lei L, Fan M, Peng S, Li T, Nagarajan R, Carver B, Ma Z, Deng J, Yan L (2021) A semi-dominant NLR allele causes whole-seedling necrosis in wheat. Plant Physiol 186(1):483–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Chu Sh, Piao R, Chin JH, Jin YM, Lee J, Qiao Y, Han L, Piao Z, Koh HJ (2008) Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Theor Appl Genet 116:1117–1127

    CAS  PubMed  Google Scholar 

  • Lee J (1981) Genetics of D3 complementary lethality in Gossypium hirsutum and G. barbadense. J Hered 72:299–300

    Google Scholar 

  • Liu S, Zhang X, Xiao S, Ma J, Shi W, Qin T, Xi H, Nie X, You C, Xu Z, Wang T, Wang Y, Zhang Z, Li J, Kong J, Aierxi A, Yu Y, Lindsey K, Klosterman SJ, Zhang X, Zhu L (2021) A single-nucleotide mutation in a Glutamate receptor-like gene confers resistance to Fusarium Wilt in Gossypium hirsutum. Adv Sci 8:2002723

    CAS  Google Scholar 

  • Muller H (1942) Isolating mechanisms, evolution, and temperature. Biol Symp 6:71–124

    Google Scholar 

  • Phillips LL, Merritt JF (1972) Interspecific incompatibility in Gossypium. I. Stem histogenesis of G. hirsutum× G. gossypioides. AM J BOT 59:203–208

    Google Scholar 

  • Phillips LL, Reid RK (1975) Interspecific incompatibility in Gossypium. II. Light and electron microscope studies of cell necrosis and tumorigenesis in hybrids of G. klotzschianum. AM J BOT 62:790–796

    Google Scholar 

  • Plötner B, Nurmi M, Fischer A, Watanabe M, Schneeberger K, Holm S, Vaid N, Schottler MA, Walther D, Hoefgen R, Weigel D, Laitinen RAE (2017) Chlorosis caused by two recessively interacting genes reveals a role of RNA helicase in hybrid breakdown in Arabidopsis thaliana. Plant J 91:251–262

    PubMed  Google Scholar 

  • Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJG, Luu DD, Chen H, Bahar O, Daudi A, Vleesschauwer DD, Caddell D, Zhang W, Zhao X, Li X, Ruan HJL, D, Majumder D, Chern M, Kalbacher H, Midha S, Patil PB, Sonti RV, Petzold CJ Liu CC, Brodbelt JS Felix G, Ronald PC, (2015) The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 1(6):e1500245

    PubMed  PubMed Central  Google Scholar 

  • Si Y, Zheng S, Niu J, Tian S, Gu M, Lu Q, He Y, Zhang J, Shi X, Li Y (2021a) Ne2, a typical CC–NBS–LRR-type gene, is responsible for hybrid necrosis in wheat. New Phytol 232:279–289

    CAS  PubMed  Google Scholar 

  • Si Y, Zheng S, Niu J, Tian S, Shi X, He Y, Li Y, Ling HQ (2021b) Fine mapping of hybrid necrosis gene Ne1 in common wheat (Triticum aestivum L.). Theor Appl Genet 134:2603–2611

    CAS  PubMed  Google Scholar 

  • Silow RA (1941) The comparative genetics of Gossypium anomalum and the cultivated Asiatic cottons. J Genet 42:259–358

    Google Scholar 

  • Smith L, Bomblies K, Weigel D (2011) Complex evolutionary events at a tandem cluster of Arabidopsis thaliana genes resulting in a single-locus genetic incompatibility. PLoS Genet 7:e1002164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Guo W, Zhang T (2009) Interaction of novel Dobzhansky-Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4–4. Theor Appl Genet 119:33–41

    CAS  PubMed  Google Scholar 

  • Stebbins GL Jr (1950) Isolation and the origin of species. In: Stebbins GL (ed) Variation and evolution in plants. Columbia University Press, New York, pp 189–250

    Google Scholar 

  • Stephens S (1946) The genetics of corky. Part I. J Genet 47:150

    CAS  PubMed  Google Scholar 

  • Ueno N, Kashiwagi M, Kanekatsu M, Marubashi W, Yamada T (2019) Accumulation of protein aggregates induces autolytic programmed cell death in hybrid tobacco cells expressing hybrid lethality. Sci Rep 9:10223

    PubMed  PubMed Central  Google Scholar 

  • Webb KM, Ona I, Bai J, Garrett KA, Mew T, Cruz V, Leach JE (2010) A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol 185:568–576

    CAS  PubMed  Google Scholar 

  • Xu P, Gao J, Cao Z, Chee PW, Guo Q, Xu Z, Paterson AH, Zhang X, Shen X (2017) Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton. Theor Appl Genet 130:1309–1319

    CAS  PubMed  Google Scholar 

  • Xu Z, Chen J, Meng S, Xu P, Zhai C, Huang F, Guo Q, Zhao L, Quan Y, Shangguan Y, Meng Z, Wen T, Zhang Y, Zhang X, Zhao J, Xu J, Liu J, Gao J, Ni W, Chen X, Ji W, Wang N, Lu X, Wang S, Wang K, Zhang T, Shen X (2022) Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding. Plant Comm 3:100350

    CAS  Google Scholar 

  • Yamamoto E, Takashi T, Morinika Y, Lin S, Kitano H, Matsuoka M, Ashikari M (2007) Interaction of two recessive genes, hbd2 and hbd3, induces hybrid breakdown in rice. Theor Appl Genet 115:187–194

    CAS  PubMed  Google Scholar 

  • Yoneya Y, Wakabayashi T, Kato K (2021) The temperature sensitive hybrid breakdown 1 induces low temperature-dependent intrasubspecific hybrid breakdown in rice. Breed Sci 71(2):268–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X (2015) Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes. Theor Appl Genet 128:1531–1540

    CAS  PubMed  Google Scholar 

  • Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhai C, He L, Guo Q, Zhang X, Xu P, Su H, Gong Y, Ni W, Shen X (2014) Morphological, cytological and molecular analyses of a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum. The Crop Journal 2:272–277

    Google Scholar 

  • Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fibre improvement. Nat Biotechnol 33:531–537

    CAS  PubMed  Google Scholar 

  • Zhang M, Lv S, Wang Y, Wang S, Chen C, Wang C, Wang Y, Zhang H, Ji W (2022) Fine mapping and distribution analysis of hybrid necrosis genes Ne1 and Ne2 in wheat in China. Theor Appl Genet 135(4):1177–1189

    CAS  PubMed  Google Scholar 

  • Zhao J, Liu J, Xu J, Zhao L, Wu Q, Xiao S (2018) Quantitative trait locus mapping and candidate gene analysis for verticillium wilt resistance using Gossypium barbadense chromosomal segment introgressed line. Front Plant Sci 9:682

    PubMed  PubMed Central  Google Scholar 

  • Zuellig M, Sweigart A (2018) Gene duplicates cause hybrid lethality between sympatric species of Mimulus. PLoS Genet 14(4):e1007130

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (32171986), the Jiangsu Provincial Key Research and Development Program (BE2022364), Jiangsu Collaborative Innovation Center for Modern Crop Production.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by XS. Experiments were performed by PX, JX, QG, ZX, JC, WJ, HY, LZ, JZ, JL, and XC. PX drafted the manuscript and XS revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinlian Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors note that this research is performed and reported in accordance with ethical standards of the scientific conduct.

Additional information

Communicated by Tianzhen Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

122_2023_4427_MOESM2_ESM.tif

Supplementary file2 DAB staining of lethal plants (CSSL11-9) and normal plants (Su8289). (a), (b), (c), (d) DAB staining of Su8289 after 30 °C treatment for 0, 1, 3and 5 days (e), (f), (g), (h) DAB staining of CSSL11-9 after 30 °C treatment for 0, 1, 3 and 5 days (TIF 9161 KB)

Supplementary file3 Structure variations of GoanoHBD1 and GhHBD1 (TIF 29813 KB)

Supplementary file4 Amino acid alignment of GoanoHBD1 and GhHBD1 (TIF 15567 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Xu, J., Guo, Q. et al. A recessive LRR-RLK gene causes hybrid breakdown in cotton. Theor Appl Genet 136, 189 (2023). https://doi.org/10.1007/s00122-023-04427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04427-6

Navigation