Skip to main content
Log in

Fine mapping and characterization of a major QTL for plant height on chromosome 5A in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We precisely mapped QPH.caas-5AL for plant height in wheat, predicted candidate genes and confirmed genetic effects in a panel of wheat cultivars.

Abstract

Plant height is an important agronomic trait, and appropriately reduced height can improve yield potential and stability in wheat, usually combined with sufficient water and fertilizer. We previously detected a stable major-effect quantitative trait locus QPH.caas-5AL for plant height on chromosome 5A in a recombinant inbred line population of the cross ‘Doumai × Shi 4185’ using the wheat 90 K SNP assay. Here , QPH.caas-5AL was confirmed using new phenotypic data in additional environment and new-developed markers. We identified nine heterozygous recombinant plants for fine mapping of QPH.caas-5AL and developed 14 breeder-friendly kompetitive allele-specific PCR markers in the region of QPH.caas-5AL based on the genome re-sequencing data of parents. Phenotyping and genotyping analyses of secondary populations derived from the self-pollinated heterozygous recombinant plants delimited QPH.caas-5AL into an approximate 3.0 Mb physical region (521.0–524.0 Mb) according to the Chinese Spring reference genome. This region contains 45 annotated genes, and six of them were predicted as the candidates of QPH.caas-5AL based on genome and transcriptome sequencing analyses. We further validated that QPH.caas-5AL has significant effects on plant height but not yield component traits in a diverse panel of wheat cultivars; its dwarfing allele is frequently used in modern wheat cultivars. These findings lay a solid foundation for the map-based cloning of QPH.caas-5AL and also provide a breeding-applicable tool for its marker-assisted selection. Keymessage We precisely mapped QPH.caas-5AL for plant height in wheat, predicted candidate genes and confirmed genetic effects in a panel of wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Bazhenov MS, Divashuk MG, Amagai Y, Watanabe N, Karlov GI (2015) Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Mol Breeding 35:1–8

    Article  CAS  Google Scholar 

  • Borrill P, Mago R, Xu T, Ford B, Williams SJ, Derkx A, Bovill WD, Hyles J, Bhatt D, Xia X, MacMillan C, White R, Buss W, Molnár I, Walkowiak S, Olsen OA, Doležel J, Pozniak CJ, Spielmeyer W (2022) An autoactive NB-LRR gene causes Rht13 dwarfism in wheat. Proc Natl Acad Sci USA 119:e2209875119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burko Y, Geva Y, Refael-Cohen A, Shleizer-Burko S, Shani E, Berger Y, Halon E, Chuck G, Moshelion M, Ori N (2011) From organelle to organ: ZRIZI MATE-Type transporter is an organelle transporter that enhances organ initiation. Plant Cell Physiol 52:518–527

    Article  CAS  PubMed  Google Scholar 

  • Buss W, Ford BA, Foo E, Schnippenkoetter W, Borrill P, Brooks B, Ashton AR, Chandler PM, Spielmeyer W (2020) Overgrowth mutants determine the causal role of gibberellin GA2oxidaseA13 in Rht12 dwarfism of wheat. J Exp Bot 71:7171–7178

    Article  CAS  PubMed  Google Scholar 

  • Chai L, Xin M, Dong C, Chen Z, Zhai H, Zhuang J, Cheng X, Wang N, Geng J, Wang X, Bian R, Yao Y, Guo W, Hu Z, Peng H, Bai G, Sun Q, Su Z, Liu J, Ni Z (2022) A natural variation in Ribonuclease H-like gene underlies Rht8 to confer “Green Revolution” trait in wheat. Mol Plant 15:377–380

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W (2020) A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant 13:1694–1708

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Lu Q, Zhao Z, Lu S, Duan S, Yang Y, Qiao Y, Chen L, Hu Y (2022) The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits. Planta 255:114

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Cui C, Chen L, Yang Z, Hu Y (2022) Fine mapping and candidate gene analysis of dwarf gene Rht14 in durum wheat (Triticum durum). Funct Integr Genom 22:141–152

    Article  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Ellis M, Rebetzke G, Chandler P, Bonnett D, Spielmeyer W, Richards R (2004) The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol 31:583–589

    Article  CAS  PubMed  Google Scholar 

  • Evans LT (1996) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Ford BA, Foo E, Sharwood R, Karafiatova M, Vrána J, MacMillan C, Nichols DS, Steuernagel B, Uauy C, Doležel J, Chandler PM, Spielmeyer W (2018) Rht18 semidwarfism in wheat is due to increased GA2-oxidaseA9 expression and reduced GA content. Plant Physiol 177:168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Lillemo M, Shi J, Wu J, Bjørnstad Å, Belova T, Dreisigacker S, Duveiller E, Singh P (2016) QTL characterization of fusarium head blight resistance in CIMMYT bread wheat line soru#1. PLoS ONE 11:e158052

    Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsson O, Zhang Y, Still M, Naredi P (2009) ASNA1, an ATPase targeting tail-anchored proteins, regulates melanoma cell growth and sensitivity to cisplatin and arsenite. Cancer Chemother Pharmacol 63:491–499

    Article  CAS  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wen W, He Z, Liu J, Jin H, Cao S, Geng H, Yan J, Zhang P, Wan Y, Xia X (2018) Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theor Appl Genet 131:1903–1924

    Article  PubMed  Google Scholar 

  • Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H, Zhang C, Yan J, Zhang P, Wan Y, Xia X (2019) Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol 19:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zeng H, Xu F, Yan F, Xu W (2022) H+-ATPases in plant growth and stress responses. Annu Rev Plant Biol 73:495–521

    Article  PubMed  Google Scholar 

  • Nidumukkala S, Tayi L, Chittela RK, Vudem DR, Khareedu VR (2019) DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol 39:395–407

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebetzke G, Appels R, Morrison AD, Richards R, McDonald G, Ellis M, Spielmeyer W, Bonnett D (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Tritium aestivum L.). Crop Pasture Sci 52:1221–1234

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester RI, Botwright TL (2007) Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res 100:10–23

    Article  Google Scholar 

  • Song J, Xu D, Dong Y, Li F, Bian Y, Li L, Luo X, Fei S, Li L, Zhao C, Zhang Y, Xia X, Ni Z, He Z, Cao S (2022) Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theor Appl Genet 135:3237–3246

    Article  CAS  PubMed  Google Scholar 

  • Song J, Li L, Liu B, Dong Y, Dong Y, Li F, Liu S, Luo X, Sun M, Ni Z, Fei S, Xia X, Ni Z, He Z, Cao S (2023) Fine mapping of reduced height locus RHT26 in common wheat. Theor Appl Genet 136:62

  • Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A (2019) A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J 97:887–900

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Zhu Z, Xie L, Xu D, Li J, Fu C, Chen X, Wang D, Xia X, He Z, Cao S (2019) Preliminary exploration of the source, spread, and distribution of Rht24 reducing height in bread wheat. Crop Sci 59:19–24

    Article  CAS  Google Scholar 

  • Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan MA, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S (2022) Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol 233:738–750

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Singh S, Tuteja R (2012) Helicases in improving abiotic stress tolerance in crop plants. Improv Crop Resist Abiotic Stress. https://doi.org/10.1002/9783527632930.ch19

    Article  Google Scholar 

  • Velde K, Thomas S, Heyse F, Kaspar R, Van Der Straeten D, Rohde A (2021) N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat green revolution alleles. Mol Plant 14:1–9

    Google Scholar 

  • Wang C, Bao Y, Yao Q, Long D, Xiao X, Fan X, Kang H, Zeng J, Sha L, Zhang H, Wu D, Zhou Y, Zhou Q, Wang Y, Cheng Y (2022) Fine mapping of the reduced height gene Rht22 in tetraploid wheat landrace Jianyangailanmai (Triticum turgidum L.). Theor Appl Genet 135:3643–3660

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X, Jia J (2011) Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol 157:2120–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong H, Zhou C, Fu M, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Li Y, Zhang J, Wang K, Li X, Liu L (2022) Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat. Mol Plant 15:373–376

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Wen W, Fu L, Li F, Li J, Xie L, Xia X, Ni Z, He Z, Cao S (2019) Genetic dissection of a major QTL for kernal weight spanning the Rht-B1 locus in bread wheat. Theor Appl Genet 132:3191–3200

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Xu F, Qin D, Li M, Fedak G, Cao W, Yang L, Dong J (2020) Molecular mapping of QTLs conferring fusarium head blight resistance in Chinese wheat cultivar Jingzhou 66. Plants 9:1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ishino S, Yamagami T, Kumamaru T, Satoh H, Ishino Y (2012) The OsGEN-L protein from Oryza sativa possesses Holliday junction resolvase activity as well as 5’-flap endonuclease activity. J Biochem 151:317–327

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Liu Z, Yang B, Chen H, Zhang H, Hou D (2020) The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci Rep 10:12261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L (2014) A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7:1522–1532

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li C, Zhang W, Zhang X, Mo Y, Tranquilli GE, Vanzetti LS, Dubcovsky J (2023) Wheat plant height locus RHT25 encodes a PLATZ transcription factor that interacts with DELLA (RHT1). Proc Natl Acad Sci USA 120:e2300203120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Zhang N, Wu Y, Sun H, Liu C, Fan X, Yan X, Xu H, Ji J, Cui F (2019) QTL for spike-layer uniformity and their influence on yield-related traits in wheat. BMC Genet 20:23

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program of China (2022YFF1002904), the National Natural Science Foundation of China (32101733) and the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS).

Author information

Authors and Affiliations

Authors

Contributions

LLL and SHC wrote the draft manuscript; LLL performed the experiments; DAX, YJB, BYL, JQZ, LNX, SYL and XLT participated in field trials; SHC designed the experiments; XCX, JDL, YZ and ZHH assisted in writing the paper.

Corresponding authors

Correspondence to Yong Zhang or Shuanghe Cao.

Ethics declarations

Conflict of interest

We declare no conflicts of interest in regard to this manuscript.

Ethical approval

These experiments complied with the ethical standards in China.

Additional information

Communicated by Lee Hickey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 60 kb)

Supplementary file2 (DOCX 3882 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xu, D., Bian, Y. et al. Fine mapping and characterization of a major QTL for plant height on chromosome 5A in wheat. Theor Appl Genet 136, 167 (2023). https://doi.org/10.1007/s00122-023-04416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04416-9

Navigation