Skip to main content
Log in

ZmAGO18b negatively regulates maize resistance against southern leaf blight

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Here, we report that ZmAGO18b encoding an argonaute protein is a negative regulator of maize resistance against southern leaf blight.

Abstract

Southern leaf blight caused by fungal pathogen Cochliobolus heterostrophus is a destructive disease on maize throughout the world. Argonaute (AGO) proteins, key regulators in small RNA pathway, play important roles in plant defense. But whether they have function in maize resistance against C. heterostrophus is unknown. Association analysis between the nucleic variation of 18 ZmAGO loci with disease phenotype against C. heterostrophus was performed, and the ZmAGO18b locus was identified to be associated with resistance against C. heterostrophus. Overexpression of ZmAGO18b gene suppresses maize resistance against C. heterostrophus, and mutation of ZmAGO18b enhances maize resistance against C. heterostrophus. Further, we identified the resistant haplotype of ZmAGO18b by association analysis of natural variation in ZmAGO18b genomic DNA sequences with seedling resistance phenotypes against C. heterostrophus and confirmed the resistant haplotype is co-segregated with resistance phenotypes against C. heterostrophus in two F2 populations. In sum, this study reports that ZmAGO18b negatively regulates maize resistance against C. heterostrophus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this published article and its supplementary information files.

References

  • Alazem M, He MH, Moffett P, Lin NS (2017) Abscisic acid induces resistance against bamboo mosaic virus through argonaute 2 and 3. Plant Physiol 174:339–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balint-Kurti PJ, Johal GS (2009) Maize Disease Resistance. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, New York, NY, pp 229–250

    Chapter  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brosseau C, Moffett P (2015) Functional and genetic analysis identify a role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing. Plant Cell 27:1742–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes KJ, Patak JK, White DG (1989) Relationships between yield of three maize hybrids and severity of southern leaf blight caused by race O of Bipolaris maydis. Plant Dis 73:834–840

    Article  Google Scholar 

  • Cai HW, Gao ZS, Yuyama N, Ogawa N (2003) Identification of AFLP markers closely linked to the rhm gene for resistance to Southern Corn Leaf Blight in maize by using bulked segregant analysis. Mol Genet Genom MGG 269:299–303

    Article  CAS  Google Scholar 

  • Chen C, Zhao Y, Tabor G, Nian H, Phillips J, Wolters P, Yang Q, Balint-Kurti P (2023a) A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. New Phytol 238:1182–1197

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Xiao Y, Dai S, Dai Z, Wang X, Li B, Jaqueth JS, Li W, Lai Z, Ding J, Yan J (2023b) Genetic basis of resistance to southern corn leaf blight in the maize multi-parent population and diversity panel. Plant Biotechnol J 21:506–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, Isono E, Schumacher K, Genschik P (2012) Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci USA 109:15942–15946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan CG, Fang YY, Zhou BJ, Zhao JH, Hou WN, Zhu H, Ding SW, Guo HS (2012) Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein. Plant Cell 24:259–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150:100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellendorff U, Fradin EF, de Jonge R, Thomma BP (2009) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60:591–602

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Shim WB, Gobel C, Kunze S, Feussner I, Meeley R, Balint-Kurti P, Kolomiets M (2007) Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol Plant-Microbe Interact MPMI 20:922–933

  • Hamera S, Song X, Su L, Chen X, Fang R (2012) Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. Plant J for Cell Mol Biol 69:104–115

    Article  CAS  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q, Yan J (2017) Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in Maize. Mol Plant 10:414–426

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Ramirez V, Garcia-Andrade J, Flors V, Vera P (2011) The RNA silencing enzyme RNA polymerase v is required for plant immunity. PLoS Genet 7:e1002434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Zuniga LO (2016) Use of chromosome segment substitution lines for the identification of multiple disease resistance loci in maize. Crop science. North Carolina State University, Raleigh NC:p 235

  • McCue AD, Panda K, Nuthikattu S, Choudury SG, Thomas EN, Slotkin RK (2015) ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J 34:20–35

    Article  CAS  PubMed  Google Scholar 

  • Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14:447–459

    Article  CAS  PubMed  Google Scholar 

  • Poulsen C, Vaucheret H, Brodersen P (2013) Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell 25:22–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Cheng Y, Cheng X, Jiang H, Zhu S, Cheng B (2011) Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Rep 30:1347–1363

    Article  CAS  PubMed  Google Scholar 

  • Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12:340–349

    Article  CAS  PubMed  Google Scholar 

  • Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Xiang X, Zhai L, Zhang D, Cao Z, Liu L, Zhang Z (2018) AGO18b negatively regulates determinacy of spikelet meristems on the tassel central spike in maize. J Integr Plant Biol 60:65–78

    Article  CAS  PubMed  Google Scholar 

  • Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Bellinger M, Jin H (2014) Small RNAs: a new paradigm in plant-microbe interactions. Annu Rev Phytopathol 52:495–516

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T, Lan Y, Xie L, Zhou X, Chu C, Qi Y, Cao X, Li Y (2017) ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants 3:16203

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L, Zheng H, Zhou Y, Zhang X, Cao X, Xie L, Wu Z, Qi Y, Li Y (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4

  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10:e1004573

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Q, He Y, Kabahuma M, Chaya T, Kelly A, Borrego E, Bian Y, ElKasmi F, Yang L, Teixeira P, Kolkman J, Nelson R, Kolomiets M, Dangl JL, Wisser R, Caplan J, Li X, Lauter N, Balint-Kurti P (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49:1364–1372

    Article  CAS  PubMed  Google Scholar 

  • Zhai L, Sun W, Zhang K, Jia H, Liu L, Liu Z, Teng F, Zhang Z (2014) Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize. J Integr Plant Biol 56:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Zhang H, Arikit S, Huang K, Nan GL, Walbot V, Meyers BC (2015) Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA 112:3146–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Niu D, Carbonell A, Wang A, Lee A, Tun V, Wang Z, Carrington JC, Chang CE, Jin H (2014) ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat Commun 5:5468

    Article  PubMed  Google Scholar 

  • Zhang J, Jia X, Wang GF, Ma S, Wang S, Yang Q, Chen X, Zhang Y, Lyu Y, Wang X, Shi J, Zhao Y, Chen Y, Wu L (2022) Ascorbate peroxidase 1 confers resistance to southern corn leaf blight in maize. J Integr Plant Biol

  • Zhao Y, Lu X, Liu C, Guan H, Zhang M, Li Z, Cai H, Lai J (2012) Identification and fine mapping of rhm1 locus for resistance to Southern corn leaf blight in maize. J Integr Plant Biol 54:321–329

    Article  CAS  PubMed  Google Scholar 

  • Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB, McMullen MD, Pratt RC, Balint-Kurti PJ (2010) Mapping resistance quantitative trait Loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance? Phytopathology 100:72–79

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31761143008, 32072007), HZAU-AGIS Cooperation Fund (SZYJY2023017), the fellowship of China Postdoctoral Science Foundation (2022M721272), and Postdoctoral Creative Research Positions of Hubei Province of China (2022).

Funding

This work was supported by the National Natural Science Foundation of China (31761143008, 32072007), HZAU-AGIS Cooperation Fund (SZYJY2023017), the fellowship of China Postdoctoral Science Foundation (2022M721272), and Postdoctoral Creative Research Positions of Hubei Province of China (2022).

Author information

Authors and Affiliations

Authors

Contributions

ZD did GWAS analysis, generated F2 populations, did disease phenotype evaluation, and analyzed data; QY did ZmAGO18b genomic DNA cloning and resequencing; DC, BL, and BZ did the genotyping analysis; JQ did RT-qPCR and generated CRISPR constructs; ZZ helped in experiment design; KC and SZ did field management; ZL directed the project, designed the experiment, and wrote the manuscript.

Corresponding author

Correspondence to Zhibing Lai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Beat Keller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2097 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Yang, Q., Chen, D. et al. ZmAGO18b negatively regulates maize resistance against southern leaf blight. Theor Appl Genet 136, 158 (2023). https://doi.org/10.1007/s00122-023-04405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04405-y

Navigation