Skip to main content
Log in

Sef1, rapid-cycling Brassica napus for large-scale functional genome research in a controlled environment

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We demonstrated a short-cycle B. napus line, Sef1, with a highly efficient and fast transformation system, which has great potential in large-scale functional gene analysis in a controlled environment.

Abstract

Rapeseed (Brassica napus L.) is an essential oil crop that accounts for a considerable share of global vegetable oil production. Nonetheless, studies on functional genes of B. napus are lagging behind due to the complicated genome and long growth cycle, this is largely due to the limited availability of gene analysis and modern genome editing-based molecular breeding. In this study, we demonstrated a short-cycle semi-winter-type Brassica napusSef1’ with very early-flowering and dwarf phenotype, which has great potential in large-scale indoor planting. Through the construction of an F2 population of Sef1 and Zhongshuang11, bulked segregant analysis (BSA) combined with the rape Bnapus50K SNP chip assay method was used to identify the early-flowering genes in Sef1, and a mutation in BnaFT.A02 was identified as a major locus significantly affecting the flowering time in Sef1. To further investigate the mechanism of early flowering in Sef1 and discover its potential in gene function analysis, an efficient Agrobacterium-mediated transformation system was established. The average transformation efficiency with explants of hypocotyls and cotyledons was 20.37% and 12.8%, respectively, and the entire transformation process took approximately 3 months from explant preparation to seed harvest of transformed plants. This study demonstrates the great potential of Sef1 for large-scale functional gene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article and its supplementary information files. The supplementary materials are available at the online version.

Materials request

The authors agree to provide B. napus line Sef1 for research purpose only under a Material Transfer Agreement. Correspondence and requests for materials should be addressed to ZF (fanzhixiong@aaas.org.cn).

References

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer PE, Hurgobin B, Golicz AA, Chan CK, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King GJ, Batley J, Edwards D (2017) Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J 15:1602–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189

    Article  CAS  PubMed  Google Scholar 

  • Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai F, Shao C, Zhang Y, Shi G, Bao Z, Bao M, Zhang J (2021) Two FD homologs from London plane (Platanus acerifolia) are associated with floral initiation and flower morphology. Plant Sci 310:110971

    Article  CAS  PubMed  Google Scholar 

  • Cardoza V, Stewart CN Jr (2006) Canola (Brassica napus L.). Methods Mol Biol 343:257–266

    CAS  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Penfield S (2018) Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 360:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Fan F, Li N, Chen Y, Liu X, Sun H, Wang J, He G, Zhu Y, Li S (2017) Development of elite BPH-resistant wide-spectrum restorer lines for three and two line hybrid rice. Front Plant Sci 8:986

    Article  PubMed  PubMed Central  Google Scholar 

  • Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550

    Article  PubMed  Google Scholar 

  • Freytes SN, Canelo M, Cerdan PD (2021) Regulation of flowering time: when and where? Curr Opin Plant Biol 63:102049

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Shen Y, Hao J, Wu J, Ke L, Wu C, Huang K, Luo B, Xu M, Cheng X, Zhou X, Sun J, Xing C, Sun Y (2015) Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep 5:11790

    Article  PubMed  PubMed Central  Google Scholar 

  • Gacek K, Bartkowiak-Broda I, Batley J (2018) Genetic and molecular regulation of seed storage proteins (SSPs) to improve protein nutritional value of oilseed rape (Brassica napus L.) Seeds. Front Plant Sci 9:890

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269

    Article  CAS  PubMed  Google Scholar 

  • He Y, Chen T, Zeng X (2020) Genetic and epigenetic understanding of the seasonal timing of flowering. Plant Commun 1:100008

    Article  PubMed  Google Scholar 

  • Jin Q, Gao G, Guo C, Yang T, Li G, Song J, Zheng N, Yin S, Yi L, Li Z, Ge X, King GJ, Wang J, Zhou G (2022) Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed. Theor Appl Genet 135:3469–3483

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Guo Q, Lin R (2019) The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering. Plant Physiol 181:656–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Ke L, Lei W, Yang W, Wang J, Gao J, Cheng J, Sun Y, Fan Z, Yu D (2020) Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC Plant Biol 20:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R (2020) Chromosome-scale assembly of winter oilseed rape Brassica napus. Front Plant Sci 11:496

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu M, Fan F, He S, Guo Y, Chen G, Li N, Li N, Yuan H, Si F, Yang F, Li S (2022) Creation of elite rice with high-yield, superior-quality and high resistance to brown planthopper based on molecular design. Rice 15:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai YR, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li NN, Zhou G, Zheng H, Wang X, Paterson AH, Li J (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10:1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo X, Chen T, Zeng X, He D, He Y (2019) Feedback Regulation of FLC by FLOWERING LOCUS T (FT) and FD through a 5′FLC promoter region in Arabidopsis. Mol Plant 12:285–288

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari P, Selvaraj G, Kovalchuk I (2011) Optimization of Brassica napus (canola) explant regeneration for genetic transformation. New Biotechnol 29:144–155

    Article  CAS  Google Scholar 

  • Mehraj H, Akter A, Miyaji N, Miyazaki J, Shea DJ, Fujimoto R, Doullah MA (2020) Genetics of clubroot and fusarium wilt disease resistance in Brassica vegetables: the application of marker assisted breeding for disease resistance. Plants 9:726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naeem M, Ali Z, Khan A, Sami Ul A, Chaudhary HJ, Ashraf J, Baloch FS (2022) Omics: a tool for resilient rice genetic improvement strategies. Mol Biol Rep 49:5075–5088

    Article  CAS  PubMed  Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Sun Z, McVetty PB, Li G (2008) High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor Appl Genet 117:895–904

    Article  CAS  PubMed  Google Scholar 

  • Shamsudin NA, Swamy BP, Ratnam W, Sta Cruz MT, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao C, Cai F, Zhang Y, Bao Z, Shi G, Bao M, Zhang J (2022) Regulation of alternative splicing of PaFT and PaFDL1, the FT and FD homologs in Platanus acerifolia. Gene 830:146506

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Geuten K, Giri BS, Varma A (2020) The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs. Physiol Plant 170:373–383

    Article  CAS  PubMed  Google Scholar 

  • Sparrow PA, Irwin JA (2015) Brassica oleracea and B. napus. Kan Wang (ed), Agrobacterium Protocols: Methods in Molecular Biology 1223: 287–297

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, Liu W, Huang S, Chen W, Yu J, Mei D, Meng J, Zeng P, Shi J, Liu K, Wang X, Wang X, Long Y, Liang X, Hu Z, Huang G, Dong C, Zhang H, Li J, Zhang Y, Li L, Shi C, Wang J, Lee SM, Guan C, Xu X, Liu S, Liu X, Chalhoub B, Hua W, Wang H (2017) The high-quality genome of Brassica napus cultivar “ZS11” reveals the introgression history in semi-winter morphotype. Plant J 92:452–468

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhang D, Zheng H, Wu Y, Mei J, Ke L, Yu D, Sun Y (2022) Biochemical and expression analyses revealed the involvement of proanthocyanidins and/or their derivatives in fiber pigmentation of Gossypium stocksii. Int J Mol Sci 23:1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng Y, Liang Y, Wang M, Mai H, Ke L (2019) Nitrate transporter 1.1 is involved in regulating flowering time via transcriptional regulation of Flowering Locus C in Arabidopsis thaliana. Plant Sci 284:30–36

    Article  CAS  PubMed  Google Scholar 

  • Tudor EH, Jones DM, He Z, Bancroft I, Trick M, Wells R, Irwin JA, Dean C (2020) QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol J 18:2466–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollrath P, Chawla HS, Schiessl SV, Gabur I, Lee H, Snowdon RJ, Obermeier C (2021) A novel deletion in Flowering Locus T modulates flowering time in winter oilseed rape. Theor Appl Genet 134:1217–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md, Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Wei L, Xiao M, Hayward A, Fu D (2013) Applications and challenges of next-generation sequencing in Brassica species. Planta 238:1005–1024

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H, Chen X, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z, Li X, Shamsi IH, Jilani G, Wu L, Zheng H, Zhang G, Chalhoub B, Shen L, Yu H, Jiang L (2019) Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant 12:30–43

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Wang H, Song N, Yu Z, Imran K, Xie W, Qiu S, Zhou F, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B (2021) The Bnapus50K array: a quick and versatile genotyping tool for Brassica napus genomic breeding and research. G3 Bethesda 11:jkab241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan L, Yan T, Lu L, Zhao X, Wu D, Hua S, Jiang L (2020) Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). Plant, Cell Environ 43:675–691

    Article  CAS  PubMed  Google Scholar 

  • Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G, Hu J, Zhu L, Gao Z, Hu X, Guo L, Xiong G, Wang Y, Li J, Qian Q (2017) Rational design of high-yield and superior-quality rice. Nat Plants 3:17031

    Article  PubMed  Google Scholar 

  • Zhu D, Rosa S, Dean C (2015) Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J Mol Biol 427:659–669

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhao X, Xu Y, Wang Q, Wang H, Wu D, Jiang L (2020) Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Theor Appl Genet 133:2839–2852

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY21C130008 and Shanghai Agricultural Foundation (No. 202001).

Author information

Authors and Affiliations

Authors

Contributions

LK and ZF conceived and designed the experiments. XX, YJ, WX, WY, DQ, and JG performed the experiments. XX, YJ, DY, and FC analyzed the data. XX, LK, and ZF wrote the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Liping Ke or Zhixiong Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Rod Snowdon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 497 KB)

Supplementary file2 (PDF 568 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Jiang, Y., Xu, W. et al. Sef1, rapid-cycling Brassica napus for large-scale functional genome research in a controlled environment. Theor Appl Genet 136, 163 (2023). https://doi.org/10.1007/s00122-023-04402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04402-1

Navigation