Skip to main content
Log in

Precisely mapping a major QTL for grain weight on chromosome 5B of the founder parent Chuanmai42 in the wheat-growing region of southwestern China

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTgw.saas-5B was validated as a major thousand-grain weight-related QTL in a founder parent used for wheat breeding and then precisely mapped to a 0.6 cM interval.

Abstract

Increasing the thousand-grain weight (TGW) is considered to be one of the most important ways to improve yield, which is a core objective among wheat breeders. Chuanmai42, which is a wheat cultivar with high TGW and a high and stable yield, is a parent of more than 30 new varieties grown in southwestern China. In this study, a Chuanmai42-derived recombinant inbred line (RIL) population was used to dissect the genetic basis of TGW. A major QTL (QTgw.saas-5B) mapped to the Xgwm213–Xgwm540 interval on chromosome 5B of Chuanmai42 explained up to 20% of the phenotypic variation. Using 71 recombinants with a recombination in the QTgw.saas-5B interval identified from a secondary RIL population comprising 1818 lines constructed by crossing the QTgw.saas-5B near-isogenic line with the recurrent parent Chuannong16, QTgw.saas-5B was delimited to a 0.6 cM interval, corresponding to a 21.83 Mb physical interval in the Chinese Spring genome. These findings provide the foundation for QTgw.saas-5B cloning and its use in molecular marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data supporting the conclusions of this article are provided within the article (and its Supplementary Information).

References

  • Ain QU, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743

    PubMed  PubMed Central  Google Scholar 

  • Allen AM, Barker GL, Wilkinson P, Burridge A, Winfield M, Coghill J, Uauy C, Griffiths S, Jack P, Berry S, Werner P, Melichar JP, McDougall J, Gwilliam R, Robinson P, Edwards KJ (2013) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J 11:279–295

    CAS  PubMed  Google Scholar 

  • Alonge M, Shumate A, Puiu D, Zimin AV, Salzberg SL (2020) Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies. Genetics 216:599–608

    PubMed  PubMed Central  Google Scholar 

  • Chen Z, Cheng X, Chai L, Wang Z, Bian R, Li J, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z (2020) Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theor Appl Genet 133(1):149–162

    CAS  PubMed  Google Scholar 

  • Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10(5):685–694

    CAS  PubMed  Google Scholar 

  • Guan P, Di N, Mu Q, Shen X, Wang Y, Wang X, Yu K, Song W, Chen Y, Xin M, Hu Z, Guo W, Yao Y, Ni Z, Sun Q, Peng H (2019) Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome 4AL in bread wheat (Triticum aestivum L.). Theor Appl Genet 132(8):2367–2379

    CAS  PubMed  Google Scholar 

  • Han F, Fedak G, Guo W, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics 170(3):1239–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanif M, Gao F, Liu J, Wen W, Zhang Y, Rasheed A, Xia X, He Z, Cao S (2016) TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed 36:1

    CAS  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Crane CF, Zwick MS, Czeschin DG, Wendel JF, McKnight TD, Price HJ, Stelly DM (2000) Ty1-copia-retrotransposon behavior in a polyploid cotton. Chromosom Res 8(1):73–76

    CAS  Google Scholar 

  • Holtz Y, Ardisson M, Ranwez V, Besnard A, Leroy P, Poux G, Roumet P, Viader V, Santoni S, David J (2016) Genotyping by sequencing using specific allelic capture to build a high-density genetic map of durum wheat. PLoS ONE 11(5):e0154609

    PubMed  PubMed Central  Google Scholar 

  • Hong Y, Chen L, Du LP, Su Z, Wang J, Ye X, Qi L, Zhang Z (2014) Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Funct Integr Genom 14:341–349

    CAS  Google Scholar 

  • Hu MJ, Zhang HP, Cao JJ, Zhu XF, Wang SX, Jiang H, Wu ZY, Lu J, Chang C, Sun GL, Ma CX (2016) Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed 36:25

    Google Scholar 

  • Huang Y, Kong Z, Wu X, Cheng R, Yu D, Ma Z (2015) Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theor Appl Genet 128(12):2437–2445

    CAS  PubMed  Google Scholar 

  • Jaiswal V, Gahlaut V, Mathur S, Agarwal P, Khandelwal MK, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2015) Identification of novel SNP in promoter sequence of TaGW2–6A associated with grain weight and other agronomic traits in wheat (Triticum aestivum L.). PLoS ONE 10:e0129400

    PubMed  PubMed Central  Google Scholar 

  • Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139

    CAS  PubMed  Google Scholar 

  • Jia J, Xie Y, Cheng J, Kong C, Wang M, Gao L, Zhao F, Guo J, Wang K, Li G, Cui D, Hu T, Zhao G, Wang D, Ru Z, Zhang Y (2021) Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol 22(1):26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Z, Cheng R, Yan H, Yuan H, Zhang Y, Li G, Jia H, Xue S, Zhai W, Yuan Y, Ma Z (2022) Fine mapping KT1 on wheat chromosome 5A that conditions kernel dimensions and grain weight. Theor Appl Genet 135(3):1101–1111

    CAS  PubMed  Google Scholar 

  • Langridge P (2013) Wheat genomics and the ambitious targets for future wheat production. Genome 56:545–547

    PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    PubMed  PubMed Central  Google Scholar 

  • Li J, Wan HS, Yang WY (2014) Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol 52:735–742

    Google Scholar 

  • Li N, Xu R, Duan P, Li Y (2018) Control of grain size in rice. Plant Reprod 31(3):237–251

    PubMed  Google Scholar 

  • Li X, Xu X, Liu W, Li X, Yang X, Ru Z, Li L (2020) Dissection of superior alleles for yield-related traits and their distribution in important cultivars of wheat by association mapping. Front Plant Sci 11:175

    PubMed  PubMed Central  Google Scholar 

  • Li J (2014) QTL analysis for yield-related traits of a key breeding parent Chuanmai 42 and the contribution of its allelic variation. A dissertation of Sichuan Agricultural University, Chengdu, China (in Chinese with English abstract)

  • Liu B, Xu C, Zhao N, Qi B, Kimatu JN, Pang J, Han F (2009) Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J Genet Genom 36(9):519–528

    CAS  Google Scholar 

  • Liu J, Chang Z, Zhang X, Yang Z, Li X, Jia J, Zhan H, Guo H, Wang J (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126(1):265–274

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Sorrells ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37(5):871–875

    CAS  PubMed  Google Scholar 

  • Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X (2016) TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J 14:1269–1280

    CAS  PubMed  Google Scholar 

  • Ma F, Xu Y, Ma Z, Li L, An D (2018) Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed 38(7):91

    Google Scholar 

  • Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F (2021) WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant 14:1965–1968

    CAS  PubMed  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41(2):221–230

    CAS  PubMed  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Google Scholar 

  • Patil RM, Oak MD, Tamhankar SA, Rao VS (2009) Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp durum). J Cereal Sci 49(3):378–386

    CAS  Google Scholar 

  • Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res 22(12):1666–1680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu P, Wang J, Wen W, Gao F, Liu J, Xia X, Peng H, Zhang L (2021) Construction of consensus genetic map with applications in gene mapping of wheat (Triticum aestivum L.) using 90K SNP array. Front Plant Sci 12:727077

    PubMed  PubMed Central  Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupta V (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51(4):421–429

    CAS  PubMed  Google Scholar 

  • Reif JC, Gowda M, Maurer HP, Longin CF, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Würschum T (2011) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122(5):961–970

    PubMed  Google Scholar 

  • Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48(4):447–456

    CAS  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    CAS  PubMed  Google Scholar 

  • Song J, Xu D, Dong Y, Li F, Bian Y, Li L, Luo X, Fei S, Li L, Zhao C, Zhang Y, Xia X, Ni Z, He Z, Cao S (2022) Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theor Appl Genet 135:3237–3246

  • Su JY, Zheng Q, Li HW, Li B, Jing RL, Tong YP, Li ZS (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    CAS  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    CAS  PubMed  Google Scholar 

  • Sun C, Zhang F, Yan X, Zhang X, Dong Z, Cui D, Chen F (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J 15(8):953–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YL, Li J, Wu YQ, Wei HT, Li CS, Yang WY, Chen F (2011) Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. Agric Sci Chi 10(11):1665–1680

    CAS  Google Scholar 

  • Wan H, Li J, Ma S, Yang F, Chai L, Liu Z, Wang Q, Pu Z, Yang W (2022) Allopolyploidization increases genetic recombination in the ancestral diploid D genome during wheat evolution. Crop J 10(3):743–753

    Google Scholar 

  • Wan H, Yang F, Li J, Wang Q, Liu Z, Tang Y, Yang W (2023) Genetic improvement and application practices of synthetic hexaploid wheat. Genes 14:283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Cui F, Wang J, Jun L, Ding A, Zhao C, Li X, Feng D, Gao J, Wang H (2012) Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. J Genet 91(3):303–312

    PubMed  Google Scholar 

  • Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X (2017) A High-density consensus map of common wheat integrating four mapping populations scanned by the 90K SNP array. Front Plant Sci 8:1389

    PubMed  PubMed Central  Google Scholar 

  • Werner T, Schmülling T (2022) Moonlighting PPKL1 reveals a role of cytokinin in regulating rice grain size. Mol Plant 15(2):216–218

    CAS  PubMed  Google Scholar 

  • Wu W, Liu X, Wang M, Meyer RS, Luo X, Ndjiondjop MN, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z (2017) A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants 3:17064

    CAS  PubMed  Google Scholar 

  • Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen J, Wang L, Gao G, Zhang Q, He Y (2018) GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Mol Plant 11(5):754–756

    CAS  PubMed  Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhao D, Zhu H, Xu H, Wu J, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    CAS  PubMed  Google Scholar 

  • Yan X, Zhao L, Ren Y, Dong Z, Cui D, Chen F (2019) Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Sci Rep 9:2702

    PubMed  PubMed Central  Google Scholar 

  • Yang W, Liu D, Li J, Zhang L, Wei H, Hu X, Zheng Y, He Z, Zou Y (2009) Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics 36:539–546

    CAS  PubMed  Google Scholar 

  • Yang J, Zhou Y, Wu Q, Chen Y, Zhang P, Zhang Y, Hu W, Wang X, Zhao H, Dong L, Han J, Liu Z, Cao T (2019) Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet 132:1799–1814

    CAS  PubMed  Google Scholar 

  • Yang L (2020) Identification and validation of QTL for grain related traits in common wheat. A Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China

  • Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, Jiang J, von Wettstein D, Liu B (2013) Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci U S A 110(9):3447–3452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Yang L, Liu D, Zeng J, Cao S, Xia X, Yan J, Song X, He Z, Zhang Y (2021) Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat. Theor Appl Genet 134(11):3731–3741

    CAS  PubMed  Google Scholar 

  • Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo MC (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring Genome Assembly. Plant J 107(1):303–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Q (2003) Chinese wheat improvement and pedigree analysis. Chinese Agriculture Press, Beijing

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Yu Lin (Sichuan Agricultural University) for helping to revise the manuscript.

Funding

This study was partially supported by the National Key Research and Development Program (2021YFD1200600), the National Natural Science Foundation of China (31870309), the Program of Chinese Agriculture Research System (CARS-03), the Science and Technology Department of Sichuan Province (2023NSFSC1925, 2022NSFSC0161, 2021YFYZ0020, and 2021YFYZ0002), the Sichuan Provincial Finance Department (2019QYXK034, 2022ZZCX006, 1 + 9KJGG001, and the Accurate Identification of Crop Germplasm Project), and the Research Project of Chengdu Normal University (CS22XMPY0109).

Author information

Authors and Affiliations

Authors

Contributions

MY and HW analyzed the data and drafted the manuscript. ZL analyzed the phenotypes and related data with assistance from QW, NY, HL, GD, YY, HF, and CY. JL, WY, and HZ constructed the NILs. WY and YZ helped design the study. WY, HW, JL, and HZ designed the study and revised the manuscript. All of the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jun Li or Haiqin Zhang.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Ian Mackay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, M., Wan, H., Yang, W. et al. Precisely mapping a major QTL for grain weight on chromosome 5B of the founder parent Chuanmai42 in the wheat-growing region of southwestern China. Theor Appl Genet 136, 146 (2023). https://doi.org/10.1007/s00122-023-04383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04383-1

Navigation