Skip to main content
Log in

Non-vernalization requirement for flowering in Brassica rapa conferred by a dominant allele of FLOWERING LOCUS T

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We identified and characterized a dominant FT allele for flowering without vernalization in Brassica rapa, while demonstrating its potential for deployment in breeding to accelerate flowering in various Brassicaceae crops.

Abstract

Controlling the timing of flowering is key to improving yield and quality of several agricultural crops including the Brassicas. Many Brassicaceae crops possess a conserved flowering mechanism in which FLOWERING LOCUS C (FLC) represses the transcription of flowering activators such as FLOWERING LOCUS T (FT) during vernalization. Here, we employed genetic analysis based on next-generation sequencing to identify a dominant FT allele, BraA.FT.2-C, for flowering in the absence of vernalization in the Brassica rapa cultivar ‘CHOY SUM EX CHINA 3’. BraA.FT.2-C harbors two large insertions upstream of its coding region and is expressed without vernalization, despite FLC expression. We show that BraA.FT.2-C offers an opportunity to introduce flowering without vernalization requirement into winter-type brassica crops, including B. napus, which have many functional FLC paralogs. Furthermore, we demonstrated the feasibility of using B. rapa harboring BraA.FT.2-C as rootstock for grafting to induce flowering in radish (Raphanus sativus), which requires vernalization for flowering. We believe that the ability of BraA.FT.2-C to overcome repression by FLC can have significant applications in brassica crops breeding to increase yields by accelerating or delaying flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The accession numbers for the sequence data are listed in Supplemental Tables 2 and 3. All data can be accessed from the National Center for Biotechnology Information (NCBI) database.

References

  • Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R (2021) Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci 11:619417

    Article  PubMed  PubMed Central  Google Scholar 

  • An H, Qi X, Gaynor ML, Hao Y, Gebken SC, Mabry ME, McAlvay AC, Teakle GR, Conant GC, Barker MS, Fu T, Yi B, Pires JC (2019) Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat Commun 10:2878

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai X, Lin R, Liang J, King GJ, Wu J, Wang X (2022) Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa. Plant Biotechnol J 20:1298–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderwood A, Lloyd A, Hepworth J, Tudor EH, Jones DM, Woodhouse S, Bilham L, Chinoy C, Williams K, Corke F, Doonan JH, Ostergaard L, Irwin JA, Wells R, Morris RJ (2021) Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus. New Phytol 229:3534–3548

    Article  CAS  PubMed  Google Scholar 

  • Chawla HS, Lee H, Gabur I, Vollrath P, Tamilselvan-Nattar-Amutha S, Obermeier C, Schiessl SV, Song J, Liu K, Guo L, Parkin IAP, Snowdon RJ (2021) Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnol J 19:240–250

    Article  CAS  PubMed  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Franks SJ, Perez-Sweeney B, Strahl M, Nowogrodzki A, Weber JJ, Lalchan R, Jordan KP, Litt A (2015) Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa. PeerJ 3:e1339

    Article  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J (2012) A Tourist-like MITE insertion in the upstream region of the BnFLCA10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh N, Segawa T, Tamiru M, Abe A, Sakamoto S, Uemura A, Oikawa K, Kutsuzawa H, Koga H, Imamura T, Terauchi R, Takagi H (2019) Next-generation sequencing-based bulked segregant analysis for QTL mapping in the heterozygous species Brassica rapa. Theor Appl Genet 132:2913–2925

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto N, Yui S, Nishikawa K, Takahata Y, Yokoi S (2014) A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196:213–223

    Article  CAS  Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang S, Bai J, He Y (2016) Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC. Plant Biotechnol J 14:905–914

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Madrid E, Chandler JW, Coupland G (2021) Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. J Exp Bot 72:4–14

    Article  CAS  PubMed  Google Scholar 

  • Motoki K, Kinoshita Y, Nakano R, Hosokawa M, Nakazaki T (2022) Quantitative Analysis of Florigen for the Variability of Floral Induction in Cabbage/Radish Inter-generic Grafting. Plant Cell Physiol 63:1230–1241

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segawa T, Nishiyama C, Tamiru-Oli M, Sugihara Y, Abe A, Sone H, Itoh N, Asukai M, Uemura A, Oikawa K, Utsushi H, Ikegami-Katayama A, Imamura T, Mori M, Terauchi R, Takagi H (2021) Sat-BSA: an NGS-based method using local de novo assembly of long reads for rapid identification of genomic structural variations associated with agronomic traits. Breed Sci 71:299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie WZ, Cheng Y, Zhang Y, Liu K, Yang QY, Chen LL, Guo L (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada S, Akter A, Itabashi E, Nishida N, Shea DJ, Miyaji N, Mehraj H, Osabe K, Shimizu M, Takasaki-Yasuda T, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R (2019) The role of FRIGIDA and FLOWERING LOCUS C genes in flowering time of Brassica rapa leafy vegetables. Sci Rep 9:13843

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Vollrath P, Chawla HS, Schiessl SV, Gabur I, Lee H, Snowdon RJ, Obermeier C (2021) A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape. Theor Appl Genet 134:1217–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:1–13

    Article  Google Scholar 

  • Wei Q, Hu T, Xu X, Tian Z, Bao C, Wang J, Pang H, Hu H, Yan Y, Liu T, Wang W (2022) The New Variation in the Promoter Region of FLOWERING LOCUS T Is Involved in Flowering in Brassica rapa. Genes (basel) 13:1162

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wei K, Cheng F, Li S, Wang Q, Zhao J, Bonnema G, Wang X (2012) A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi X, Wei K, Gao B, Liu J, Liang J, Cheng F, Wang X, Wu J (2018) BrFLC5: a weak regulator of flowering time in Brassica rapa. Theor Appl Genet 131:2107–2116

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Wan M, Guo C, Wang B, Li H, Li G, Tian Y, Ge X, King GJ, Liu K, Li Z, Wang J (2020) Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. J Exp Bot 71:4729–4741

    Article  CAS  PubMed  Google Scholar 

  • Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60:1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Meng L, Liu B, Hu Y, Cheng F, Liang J, Mark GMA, Xiaowu W, Wu J (2015) A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa. Plant Sci 241:211–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All computations were performed on the NIG supercomputer at Research Organization of Information and Systems (ROIS) of the National Institute of Genetics (Mishima, Shizuoka, Japan). Seeds of the Brassica rapa landraces/cultivars used in this study, except ‘YS’, were obtained from the National Agriculture and Food Research Organization (NARO) Genebank. We specially thank Ryo Fujimoto (Kobe University) for kindly providing seeds of ‘YS’.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MN performed genetic and expression analyses, MT conceived and supervised the entire study, MH performed grafting, TS performed Sat-BSA analysis, SS performed next generation sequencing, NM developed the segregating progenies used for genetic analysis, NI developed the segregating progenies and performed genetic analysis, TI performed expression analysis, MS conceived and supervised the entire study, and HT designed the research and wrote the paper. All authors contributed to the manuscript.

Corresponding author

Correspondence to Hiroki Takagi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Isobel AP Parkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, M., Tamiru-Oli, M., Hara, M. et al. Non-vernalization requirement for flowering in Brassica rapa conferred by a dominant allele of FLOWERING LOCUS T. Theor Appl Genet 136, 132 (2023). https://doi.org/10.1007/s00122-023-04378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04378-y

Navigation