Skip to main content
Log in

Structural variations and environmental specificities of flowering time-related genes in Brassica napus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We found that the flowering time order of accessions in a genetic population considerably varied across environments, and homolog copies of essential flowering time genes played different roles in different locations.

Abstract

Flowering time plays a critical role in determining the life cycle length, yield, and quality of a crop. However, the allelic polymorphism of flowering time-related genes (FTRGs) in Brassica napus, an important oil crop, remains unclear. Here, we provide high-resolution graphics of FTRGs in B. napus on a pangenome-wide scale based on single nucleotide polymorphism (SNP) and structural variation (SV) analyses. A total of 1337 FTRGs in B. napus were identified by aligning their coding sequences with Arabidopsis orthologs. Overall, 46.07% of FTRGs were core genes and 53.93% were variable genes. Moreover, 1.94%, 0.74%, and 4.49% FTRGs had significant presence-frequency differences (PFDs) between the spring and semi-winter, spring and winter, and winter and semi-winter ecotypes, respectively. SNPs and SVs across 1626 accessions of 39 FTRGs underlying numerous published qualitative trait loci were analyzed. Additionally, to identify FTRGs specific to an eco-condition, genome-wide association studies (GWASs) based on SNP, presence/absence variation (PAV), and SV were performed after growing and observing the flowering time order (FTO) of plants in a collection of 292 accessions at three locations in two successive years. It was discovered that the FTO of plants in a genetic population changed a lot across various environments, and homolog copies of some key FTRGs played different roles in different locations. This study revealed the molecular basis of the genotype-by-environment (G × E) effect on flowering and recommended a pool of candidate genes specific to locations for breeding selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The supporting data of Figures and Tables are available in Supplemental Tables S1–S23. The raw reads of the rapeseed accessions have been deposited in the public database of National Center of Biotechnology Information under SRP155312 (https://www.ncbi.nlm.nih.gov /sra/SRP155312) and China National Center for Bioinformation (NGDC) (https://ngdc.cncb.ac.cn/gsa/browse/CRA001854).

References

  • Allaire JJ, Gandrud C, Russell K, Yetman C (2017) networkD3: D3 JavaScript Network Graphs from R., R package version 0.4 edn

  • Bayer PE, Hurgobin B, Golicz AA, Chan CKK, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King GJ, Batley J, Edwards D (2017) Assembly and comparison of two closely related Brassica napus genomes. PLANT BIOTECHNOL J 15:1602–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. NAT PLANTS 6:914–920

    Article  PubMed  Google Scholar 

  • Bayer PE, Scheben A, Golicz AA, Yuan Y, Faure S, Lee H, Chawla HS, Anderson R, Bancroft I, Raman H, Lim YP, Robbens S, Jiang L, Liu S, Barker MS, Schranz ME, Wang X, King GJ, Pires JC, Chalhoub B, Snowdon RJ, Batley J, Edwards D (2021) Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnol J 19:2488–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry S, Dean C (2015) Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouché F, Lobet G, Tocquin P, Périlleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44:D1167–D1171

    Article  PubMed  Google Scholar 

  • Chakrabortee S, Kayatekin C, Newby GA, Mendillo ML, Lancaster A, Lindquist S (2016) Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc Natl Acad Sci USA 113:6065–6070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Silva CD, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury J, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Tong C, Zhang X, Song A, Hu M, Dong W, Chen F, Wang Y, Tu J, Liu S, Tang H, Zhang L (2021) A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnol J 19:615–630

    Article  CAS  PubMed  Google Scholar 

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H (2021) Twelve years of SAMtools and BCFtools. Gigascience 10:1–4

    Article  CAS  Google Scholar 

  • Dolatabadian A, Bayer PE, Tirnaz S, Hurgobin B, Edwards D, Batley J (2020) Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol J 18:969–982

    Article  CAS  PubMed  Google Scholar 

  • Freytes SN, Canelo M, Cerdán PD (2021) Regulation of flowering time: When and where? Curr Opin Plant Biol 6:102049

    Article  Google Scholar 

  • Fussell GE (1955) History of Cole (Brassica sp.). Nature 176:48–51

    Article  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 Gene Mediates the Epigenetic Regulation of Vernalization in Arabidopsis. Cell 107:525–535

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Hans H, Christian J, Molina C (2014) Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Front Plant Sci 5:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyun Y, Richter R, Coupland G (2017) Competence to Flower: age-controlled sensitivity to environmental cues. Plant Physiol 173:36–46

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Olszewski NE (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5:887–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, Balloux F, Dessimoz C, Bähler J, Sedlazeck FJ (2017) Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun 8:14061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian H, Zhang A, Ma J, Wang T, Yang B, Shuang LS, Liu M, Li J, Xu X, Paterson AH, Liu L (2019) Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genom 20:21

    Article  Google Scholar 

  • King GJ, Chanson AH, McCallum EJ, Ohme-Takagi M, Byriel K, Hill JM, Martin JL, Mylne JS (2013) The Arabidopsis B3 Domain Protein VERNALIZATION1 (VRN1) Is Involved in Processes Essential for Development, with Structural and Mutational Studies Revealing Its DNA-binding Surface. J Biol Chem 288:3198–3207

  • Kinoshita A, Richter R (2020) Genetic and molecular basis of floral induction in Arabidopsis thaliana. J Exp Bot 71:2490–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R (2020) Chromosome-scale assembly of winter oilseed rape Brassica napus. Front Plant Sci 11:496

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Gao Z, He H, Terzaghi W, Fan L, Deng XW, Chen H (2015) Arabidopsis DET1 represses photomorphogenesis in part by negatively regulating DELLA protein abundance in darkness. Mol Plant 8:622–630

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. Plos Genet 12:e1005767

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Dong X, Zheng G, Xu C, Wei J, Cui J, Cao X, Li H, Fang X, Wang Y, Tian H (2022) Integrate QTL mapping and transcription profiles reveal candidate genes regulating flowering time in Brassica napus. Front Plant Sci 13:904198

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai Y, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li N, Zhou G, Zheng H, Wang X, Paterson AH, Li J (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10

  • Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745

    Article  CAS  PubMed  Google Scholar 

  • McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F (2016) The ensembl variant effect predictor. Genome Biol 17:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagaharu U (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Noda N, Ozawa T (2018) Light-controllable transcription system by nucleocytoplasmic shuttling of a truncated phytochrome B. Photochem Photobiol 94:1071–1076

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Harberd NP (1993) Derivative alleles of the arabidopsis gibberellin-insensitive (gai) mutation confer a wild-type phenotype. Plant Cell 5:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Scheben A, Severn-Ellis AA, Patel D, Pradhan A, Rae SJ, Batley J, Edwards D (2020) Linkage mapping and QTL analysis of flowering time using ddRAD sequencing with genotype error correction in Brassica napus. BMC Plant Biol 20:546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiessl S, Huettel B, Kuehn D, Reinhardt R, Snowdon R (2017a) Post-polyploidisation morphotype diversification associates with gene copy number variation. Sci Rep-UK 7:41845

    Article  CAS  Google Scholar 

  • Schiessl S, Huettel B, Kuehn D, Reinhardt R, Snowdon RJ (2017b) Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation. Sci Data 4:170013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Geuten K, Giri BS, Varma A (2020) The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs. Physiol Plantarum 170:373–383

    Article  CAS  Google Scholar 

  • Skidmore ZL, Wagner AH, Lesurf R, Campbell KM, Kunisaki J, Griffith OL, Griffith M (2016) GenVisR: genomic visualizations in R. Bioinformatics 32:3012–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie W, Cheng Y, Zhang Y, Liu K, Yang Q, Chen L, Guo L (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JM, Liu DX, Xie WZ, Yang Z, Guo L, Liu K, Yang QY, Chen LL (2021) BnPIR: Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnol J 19:412–414

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Ros IMY, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, Connor KJBO, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc Natl Acad Sci USA 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in arabidopsis. Plant Physiol 135:1008–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva RAM, Chen ZJ (2019) ggplot2: elegant graphics for data analysis (2nd ed.). Measurement: interdisciplinary research and perspectives 17:160–167

  • Wang B, Wu Z, Li Z, Zhang Q, Hu J, Xiao Y, Cai D, Wu J, King GJ, Li H, Liu K (2018) Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. Plant Biotechnol J 16:1336–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, CowI JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H, Chen X, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z, Li X, Shamsi IH, Jilani G, Wu L, Zheng H, Zhang G, Chalhoub B, Shen L, Yu H, Jiang L (2019) Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant 12:30–43

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang B, Ma N, Liu X, Qin M, Zhang Y, Wang K, Guo N, Zuo K, Liu X, Zhang M, Huang Z, Xu A (2021) Quantitative trait locus mapping and identification of candidate genes controlling flowering time in Brassica napus L. Front Plant Sci 11:626205

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan T, Yao Y, Wu D, Jiang L (2021) BnaGVD: a genomic variation database of rapeseed (Brassica napus). Plant Cell Physiol 62:378–383

    Article  CAS  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) CONSTANS activates suppressor of overexpression of constans 1 through flowering locus T to promote flowering in arabidopsis. Plant Physiol 139:770–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Mao L, Qiu J, Wang M, Jia L, Wu D, He Z, Chen M, Shen Y, Shen E, Huang Y, Li R, Hu D, Shi L, Wang K, Zhu Q, Ye C, Bancroft I, King GJ, Meng J, Fan L (2019) Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnol J 17:1998–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ulrike Lohwasser from Leibniz Institute of Plant Genetics and Crop Plant Research, Germany, for providing a part of the rapeseed accessions for this study, Dr. Li Ruimin from Zhejiang Meteorological Bureau, for providing the meteorological data of the experimental sites, and Mr. Rui Sun from Agricultural Experiment Station of Zhejiang University for the management of field experiments.

Funding

The work was financially sponsored by Natural Science Foundation of China (code nos. 32130076 and 31961143008), Key Science and Technology Project of Zhejiang Province (2021C02057), and Jiangsu Collaborative Innovation Centre for Modern Crop Production.

Author information

Authors and Affiliations

Authors

Contributions

LJ conceived the experiments. YX carried out the field experiments and data analyses. XK contributed a lot to programming and data analyses. YG, RW, XY, XC, YL, JD, YZ, MC, and HC participated in field experiments in multiple locations and years. TY and DW were involved in data analyses and many constructive discussions. YX and LJ wrote the manuscript.

Corresponding author

Correspondence to Lixi Jiang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Isobel AP Parkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2023_4326_MOESM1_ESM.pdf

Fig. S1 Venn diagrams showing the presence-frequency difference (PFD) number of flowering time-related genes (FTRGs) in winter and semi-winter (blue color circle), spring and semi-winter (yellow color circle), spring and winter (red color circle) ecotypes, and the overlapped number of FTRGs (PDF 93 KB)

122_2023_4326_MOESM2_ESM.pdf

Fig. S2 The number of structural variations (SVs) in different frequency intervals in the 991 germplasms population (PDF 113 KB)

122_2023_4326_MOESM3_ESM.pdf

Fig. S3 Scatter plot showing structural variation (SV) frequency difference between the spring and semi-winter ecotypes (PDF 2029 KB)

122_2023_4326_MOESM4_ESM.pdf

Fig. S4 Line graph showing the frequencies of flowering time-related structural variations (SVs) that are significantly different between the spring and semi-winter ecotypes. The IDs of the genes are listed in Table S20 (PDF 116 KB)

122_2023_4326_MOESM5_ESM.pdf

Fig. S5 Scatter plot showing structural variation (SV) frequency difference between the spring and winter ecotypes (PDF 3065 KB)

122_2023_4326_MOESM6_ESM.pdf

Fig. S6 Line graph showing the frequencies of flowering time-related structural variations (SVs) that are significantly different between the spring and winter ecotypes. The IDs of the genes are listed in Table S21 (PDF 136 KB)

122_2023_4326_MOESM7_ESM.pdf

Fig. S7 Scatter plot showing structural variation (SV) frequency difference between the winter and semi-winter ecotypes (PDF 3359 KB)

122_2023_4326_MOESM8_ESM.pdf

Fig. S8 Line graph showing the frequencies of flowering time-related structural variations (SVs) that are significantly different between the winter and semi-winter ecotypes. The IDs of the genes are listed in Table S22 (PDF 141 KB)

122_2023_4326_MOESM9_ESM.pdf

Fig. S9 Histograms of the days from sowing to flowering (DSF) in the three locations in two successive years (i.e., six environments) (PDF 508 KB)

122_2023_4326_MOESM10_ESM.pdf

Fig. S10 Manhattan plots of GWAS-SNP on the days from sowing to flowering (DSF) in three locations in two successive years (i.e., six environments) (PDF 4637 KB)

122_2023_4326_MOESM11_ESM.pdf

Fig. S11 Accumulated temperature (a), precipitation (b), and sunshine hours (c) during the vegetative growth stage in the three locations in two successive years (i.e., six environments) (PDF 209 KB)

122_2023_4326_MOESM12_ESM.pdf

Fig. S12 Number of accessions and proportions of each ecotype in three categories differing from each other in the degree of flowering time rank (FTR) change across six environments. (a) Bar chart showing the number of accessions of each ecotype, (b)–(f) pie charts showing the number of accessions in each category (b), proportions of each ecotype in the whole GWAS population (c), in the FTR-consistent category (d), the FTR-moderately fluctuated category (e), and the FTR-drastically fluctuated category (f) (PDF 161 KB)

Supplementary file13 (XLSX 10229 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Kong, X., Guo, Y. et al. Structural variations and environmental specificities of flowering time-related genes in Brassica napus. Theor Appl Genet 136, 42 (2023). https://doi.org/10.1007/s00122-023-04326-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04326-w

Navigation