Skip to main content

Advertisement

Log in

Genome-wise association study identified genomic regions associated with drought tolerance in mungbean (Vigna radiata (L.) R. Wilczek)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A total of 282 mungbean accessions were resequenced to identify genome-wide variants and construct a highly precise variant map, and drought tolerance-related loci and superior alleles were identified by GWAS.

Abstract

Mungbean (Vigna radiata (L.) R. Wilczek) is an important food legume crop that is highly adapted to drought environments, but severe drought significantly curtails mungbean production. Here, we resequenced 282 mungbean accessions to identify genome-wide variants and constructed a highly precise map of mungbean variants. A genome-wide association study was performed to identify genomic regions for 14 drought tolerance-related traits in plants grown under stress and well-watered conditions over three years. One hundred forty-six SNPs associated with drought tolerance were detected, and 26 candidate loci associated with more than two traits were subsequently selected. Two hundred fifteen candidate genes were identified at these loci, including eleven transcription factor genes, seven protein kinase genes and other protein coding genes that may respond to drought stress. Furthermore, we identified superior alleles that were associated with drought tolerance and positively selected during the breeding process. These results provide valuable genomic resources for molecular breeding and will accelerate future efforts aimed at mungbean improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data supporting the current study can be obtained by contacting the corresponding author (wujing@ caas.cn).

Abbreviations

QTL:

Quantitative trait locus

RIL:

Recombinant inbred line

GWAS:

Genome-wide association study

WGRS:

High-quality whole-genome resequencing

SNP:

Single-nucleotide polymorphism

InDeL:

Insertions or deletion

PCA:

Principal-component analyses

LD:

Linkage disequilibrium

BLUP:

Best linear unbiased predictions

DC:

Drought tolerance coefficient

DI:

Drought tolerance index

CV :

Coefficient of variation

HSW:

100-Seed weight

PLY:

Plot yield

PH:

Plant height

NB:

Number of branches

NMS:

Node number of the main stem

PNP:

Number of pods per plant

PL:

Pod length

NSP:

Number of seeds per pod

NS:

Number of seeds per plant

DGP:

Days of growth period

DTF:

Days to flowering

DTP:

Days to pod initiation

YP:

Yield per plant

BP:

Biomass per plant

MLM:

Mixed linear model

References

  • Ausin I, Greenberg MV, Simanshu DK, Hale CJ, Vashisht AA, Simon SA et al (2012) INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 109:8374–8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang SW, Lee DK, Jung H, Chung PJ, Kim YS, Choi YD et al (2019) Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Plant Biotechnol J 17:118–131

    Article  CAS  PubMed  Google Scholar 

  • Blum A (2011) Drought resistance—is it really a complex trait? Funct Plant Biol 38:753–757

    Article  PubMed  Google Scholar 

  • Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015) From genetics to functional genomics: Improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Y, Nguyen BH, Xie Y, Xiao B, Tang N, Zhu W et al (2017) Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front Plant Sci 8:1102

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P et al (2017) Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29:1425–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danisman S (2016) TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci 7:1930

    Article  PubMed  PubMed Central  Google Scholar 

  • Dossa K, Li D, Zhou R, Yu J, Wang L, Zhang Y et al (2019) The genetic basis of drought tolerance in the high oil crop Sesamum indicum. Plant Biotechnol J 17:1788–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Xiong L (2013) Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Curr Opin Plant Biol 16:196–204

    Article  CAS  PubMed  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Sun B, He H, Zhang Y, Tian H, Wang B (2021) Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int J Mol Sci 22:4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Yang W, Chang Y, Ma X, Tu H, Xiong F et al (2018) Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Mol Plant 11:789–805

    Article  CAS  PubMed  Google Scholar 

  • Han X, Song L (2019) Study on production and consumption characteristics and industrial development trends of mung bean and adzuki bean in China. J Agric Sci Technol 21(8):1–10

    CAS  Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443

    Article  CAS  PubMed  Google Scholar 

  • Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR (2012) The trihelix family of transcription factors–light, stress and development. Trends Plant Sci 17:163–171

    Article  CAS  PubMed  Google Scholar 

  • Keatinge JDH, Easdown WJ, Yang RY, Chadha ML, Shanmugasundaram S (2011) Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica 180:129–141

    Article  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Ayachit G, Sahoo L (2020) Screening of mungbean for drought tolerance and transcriptome profiling between drought-tolerant and susceptible genotype in response to drought stress. Plant Physiol Biochem 157:229–238

    Article  CAS  PubMed  Google Scholar 

  • Leng P, Zhao J (2020) Transcription factors as molecular switches to regulate drought adaptation in maize. Theor Appl Genet 133:1455–1465

    Article  PubMed  Google Scholar 

  • Li B, Chen L, Sun W, Wu D, Wang M, Yu Y et al (2020) Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol J 18(12):2533–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Jiang S, Yu X, Cheng C, Chen S, Cheng Y et al (2015) Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell 27:839–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Mao X, Wang J, Chang X, Reynolds M, Jing R (2019) Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ 42:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling L, Zhang W, An Y, Du B, Wang D, Guo C (2020) Genome-wide analysis of the TCP transcription factor genes in five legume genomes and their response to salt and drought stresses. Funct Integr Genomics 20:537–550

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wu J, Wang L, Fan B, Cao Z, Su Q et al (2017) Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theor Appl Genet 130:2375–2393

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    Article  PubMed  Google Scholar 

  • Mao H, Wang H, Liu S, Li Z, Yang X, Yan J et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326

    Article  CAS  PubMed  Google Scholar 

  • Meng LS, Yao SQ (2015) Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA). Plant Biotechnol J 13:893–902

    Article  CAS  PubMed  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay P, Tyagi AK (2015) OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep 5:9998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas M, Cubas P (2016) TCP factors: new kids on the signaling block. Curr Opin Plant Biol 33:33–41

    Article  CAS  PubMed  Google Scholar 

  • Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA et al (2017) Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front Plant Sci 8:2102

    Article  PubMed  Google Scholar 

  • Sandhu K, Singh A (2020) Strategies for the utilization of the USDA mung bean germplasm collection for breeding outcomes. Crop Sci 61:422–442

    Article  Google Scholar 

  • Schafleitner R, Nair RM, Rathore A, Wang YW, Lin CY, Chu SH et al (2015) The AVRDC—the world vegetable center mungbean (Vigna radiata) core and mini core collections. BMC Genom 16:344

    Article  Google Scholar 

  • Sholihin DH (2002) Molecular mapping of drought resistance in mungbean (Vigna radiata): 2. QTL linked to drought resistance. J Bioteknologi Pertanian 7:55–61

    Google Scholar 

  • Singh CM, Singh P, Tiwari C, Purwar S, Kumar M, Pratap A et al (2021) Improving drought tolerance in mungbean (Vigna radiata L. Wilczek): morpho-physiological, biochemical and molecular perspectives. Agronomy 11:1534

    Article  CAS  Google Scholar 

  • Tang W, Ji Q, Huang Y, Jiang Z, Bao M, Wang H et al (2013) FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol 163:857–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C et al (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W et al (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet 51:857–864

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) Annovar: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:164

    Article  CAS  Google Scholar 

  • Wang L, Wu J, Peng L, Liang J, Wang S (2019) Evaluation for drought-tolerance germplasm resource in mungbean. J Plant Genet Resour 20(5):1141–1150

    Google Scholar 

  • Wang L, Zhu J, Li X, Wang S, Wu J (2018) Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis. Gene 651:152–160

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J et al (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S et al (2020) Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet 52:118–125

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Chang Y, Wang L, Wang S, Wu J (2021a) Genome-wide association analysis of drought resistance based on seed germination vigour and germination rate at the bud stage in common bean (Phaseolus vulgaris L.). Agron J 113:2980–2990

    Article  CAS  Google Scholar 

  • Wu L, Chang Y, Wang L, Wu J, Wang S (2021b) Genetic dissection of drought resistance based on root traits at the bud stage in common bean. Theor Appl Genet 134:1047–1061

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Xu K, Chen S, Li T, Xia H, Chen L et al (2019) A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. BMC Plant Biol 19:260

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuliasti Y, Reflinur R (2015) Evaluation of mungbean mutant lines to drought stress and their genetic relationships using SSR markers. Atom Indones 41:161–167

    Article  Google Scholar 

  • Zhang M, Liu Y, Cai H, Guo M, Chai M, She Z et al (2020) The bZIP transcription factor GmbZIP15 negatively regulates salt- and drought-stress responses in soybean. Int J Mol Sci 21:20

    Article  CAS  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was provided by National Key R&D Program of China (2019YFD1001300, 2019YFD1001305), China Agriculture Research System of MOF and MARA-Food Legumes (CARS-08), the Agricultural Science and Technology Innovation Program of CAAS.

Author information

Authors and Affiliations

Authors

Contributions

LW and JW designed and supervised the research. LW, LP and LJ performed the phenotypic experiments. YC analysed data. YC wrote the paper. JW and SW reviewed the paper. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Lanfen Wang or Jing Wu.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1296 kb)

Supplementary file2 (XLSX 122 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Peng, L., Ji, L. et al. Genome-wise association study identified genomic regions associated with drought tolerance in mungbean (Vigna radiata (L.) R. Wilczek). Theor Appl Genet 136, 40 (2023). https://doi.org/10.1007/s00122-023-04303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04303-3

Navigation