Skip to main content
Log in

BrACOS5 mutations induced male sterility via impeding pollen exine formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

A Publisher Correction to this article was published on 23 March 2023

This article has been updated

Abstract

Key message

BrACOS5 mutations led to male sterility of Chinese cabbage verified in three allelic male-sterile mutants.

Abstract

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the major vegetable crops in East Asia, and the utilization of male-sterile line is an important measure for its hybrid seed production. Herein, we isolated three allelic male-sterile mutants, msm1-1, msm1-2 and msm1-3, from an ethyl methane sulfonate (EMS) mutagenized population of Chinese cabbage double-haploid (DH) line ‘FT’, whose microspores were completely aborted with severely absent exine, and tapetums were abnormally developed. Genetic analyses indicated that the three male-sterile mutants belonged to allelic mutation and were triggered by the same recessive nuclear gene. MutMap-based gene mapping and kompetitive allele-specific PCR (KASP) analysis demonstrated that three different single-nucleotide polymorphisms (SNPs) of BraA09g012710.3C were responsible for the male sterility of msm1-1/2/3, respectively. BraA09g012710.3C is orthologous of Arabidopsis thaliana ACOS5 (AT1G62940), encoding an acyl-CoA synthetase in sporopollenin biosynthesis, and specifically expressed in anther, so we named BraA09g012710.3C as BrACOS5. BrACOS5 localizes to the endoplasmic reticulum (ER). Mutations of BrACOS5 resulted in decreased enzyme activities and altered fatty acid contents in msm1 anthers. As well as the transcript accumulations of putative orthologs involved in sporopollenin biosynthesis were significantly down-regulated excluding BrPKSA. These results provide strong evidence for the integral role of BrACOS5 in conserved sporopollenin biosynthesis pathway and also contribute to uncovering exine development pattern and underlying male sterility mechanism in Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The data that support the results are included in this article and its supplementary materials. Other relevant materials are available from the corresponding author upon reasonable request.

Change history

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460

    Article  CAS  PubMed  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39:170–181

    Article  CAS  PubMed  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D (2011) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157:842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Azevedo SC, Barbazuk B, Ralph SG, Bohlmann J, Hamberger B, Douglas CJ (2008) Genome-wide analysis of a land plant-specific acyl:coenzyme a synthetase (ACS) gene family in Arabidopsis, poplar, rice and Physcomitrella. New Phytol 179:987–1003

    Article  Google Scholar 

  • de Azevedo SC, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ (2009) A novel fatty Acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21:507–525

    Article  Google Scholar 

  • Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller BL, Preuss D (2009) CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV, Shavarda AL (2019) Mimicking pollen and spore walls: self-assembly in action. Ann Bot 123:1205–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Huang S, Qu G, Fu W, Zhang M, Liu Z, Feng H (2020) The mutation of ent-kaurene synthase, a key enzyme involved in gibberellin biosynthesis, confers a non-heading phenotype to Chinese cabbage (Brassica rapa L. ssp pekinensis). Hortic Res 7:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Qu G, Huang S, Liu Z, Zhang M, Fu W, Ren J, Feng H (2022) Comparison between germinated seed and isolated microspore EMS mutagenesis in chinese cabbage (Brassica rapa L. ssp pekinensis). Horticulturae 8:232

    Article  Google Scholar 

  • Grienenberger E, Quilichini TD (2021) The toughest material in the plant kingdom: an update on sporopollenin. Front Plant Sci 12:703864

    Article  PubMed  PubMed Central  Google Scholar 

  • Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, Souza Cde A, Heitz T, Douglas CJ, Legrand M (2010) Analysis of TETRAKETIDE alpha-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22:4067–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Jiang M, Wan X, Hu C, Gong Y (2014) Identification and biochemical characterization of five long-chain acyl-coenzyme a synthetases from the diatom Phaeodactylum tricornutum. Plant Physiol Biochem Ppb 74:33–41

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Liu Z, Li D, Yao R, Meng Q, Feng H, Chevre AM (2014) Screening of Chinese cabbage mutants produced by60Co γ-ray mutagenesis of isolated microspore cultures. Plant Breed 133:480–488

    Article  CAS  Google Scholar 

  • Ji JL, Yang LM, Fang ZY, Zhuang M, Zhang YY, Lv HH, Liu YM, Li ZS (2017) Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposon. Theor Appl Genet 130:1441–1451

    Article  CAS  PubMed  Google Scholar 

  • Kalinger RS, Pulsifer IP, Hepworth SR, Rowland O (2020) Fatty acyl synthetases and thioesterases in plant lipid metabolism: diverse functions and biotechnological applications. Lipids 55:435–455

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Douglas CJ (2013) Sporopollenin monomer biosynthesis in arabidopsis. J Plant Biol 56:1–6

    Article  Google Scholar 

  • Kim Y, Schumaker KS, Zhu JK (2006) EMS mutagenesis of arabidopsis. Methods Mol Biol 323:101–103

    CAS  PubMed  Google Scholar 

  • Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, Souza Cde A, Geoffroy P, Heintz D, Krahn D, Kaiser M, Kombrink E, Heitz T, Suh DY, Legrand M, Douglas CJ (2010) LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22:4045–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemand B, Erhardt M, Heitz T, Legrand M (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li D, Guo Z, Shi Q, Xiong S, Zhang C, Zhu J, Yang Z (2016) OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biol 16:256

    Article  PubMed  PubMed Central  Google Scholar 

  • Li FS, Phyo P, Jacobowitz J, Hong M, Weng JK (2019a) The molecular structure of plant sporopollenin. Nat Plants 5:41–46

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Zhang YF, Li DD, Shi QS, Lou Y, Yang ZN, Zhu J (2019b) Acyl-CoA synthetases from Physcomitrella, rice and Arabidopsis: different substrate preferences but common regulation by MS188 in sporopollenin synthesis. Planta 250:535–548

    Article  CAS  PubMed  Google Scholar 

  • Li P, Su T, Zhang D, Wang W, Xin X, Yu Y, Zhao X, Yu S, Zhang F (2021) Genome-wide analysis of changes in miRNA and target gene expression reveals key roles in heterosis for Chinese cabbage biomass. Hortic Res 8:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou Y, Zhu J, Yang Z (2014) Molecular Cell Biology of Pollen Walls. Applied Plant Cell Biology. Springer, Berlin, pp 179–205

    Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16(Suppl):S142-153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127:1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin M, Tian T, Xia S, Wang Z, Song L, Yi B, Wen J, Shen J, Ma C, Fu T, Tu J (2016) Heterodimer formation of BnPKSA or BnPKSB with BnACOS5 constitutes a multienzyme complex in tapetal cells and is involved in male reproductive development in Brassica napus. Plant Cell Physiol 57:1643–1656

    Article  CAS  PubMed  Google Scholar 

  • Quilichini TD, Douglas CJ, Samuels AL (2014) New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot 114:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182

    Article  CAS  PubMed  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu Y-C, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Shen Y, Wang J, Shaw RK, Yu H, Sheng X, Zhao Z, Li S, Gu H (2021) Development of GBTS and KASP panels for genetic diversity, population structure, and fingerprinting of a large collection of broccoli (Brassica oleracea L var italica) in China. Front Plant Sci 12:655254

    Article  PubMed  PubMed Central  Google Scholar 

  • Shockey JM (2003) Arabidopsis contains a large superfamily of acyl-activating enzymes. phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases. Plant Physiol 132:1065–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Dey SS, Bhatia R, Kumar R, Behera TK (2019) Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding. Plant Reprod 32:231–256

    Article  PubMed  Google Scholar 

  • Somaratne Y, Tian Y, Zhang H, Wang M, Huo Y, Cao F, Zhao L, Chen H (2017) ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J 90:96–110

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Tsunekawa S, Koizuka C, Yamamoto K, Imamura J, Nakamura K, Ishiguro S (2013) Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus. Plant Sci 207:25–36

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Liu Z, Huang S, Feng H (2019) Mapping of the male sterile mutant gene ftms in Brassica rapa L. ssp. pekinensis via BSR-Seq combined with whole-genome resequencing. Theor Appl Genet 132:355–370

    Article  CAS  PubMed  Google Scholar 

  • Timofejeva L, Skibbe DS, Lee S, Golubovskaya I, Wang R, Harper L, Walbot V, Cande WZ (2013) Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3 Genes Genomes Genetics. 3:231–249

  • Wallace S, Chater CC, Kamisugi Y, Cuming AC, Wellman CH, Beerling DJ, Fleming AJ (2015) Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. New Phytol 205:390–401

    Article  CAS  PubMed  Google Scholar 

  • Wallace S, Fleming A, Wellman CH, Beerling DJ (2011) Evolutionary development of the plant and spore wall. AoB Plants 2011:plr027. https://doi.org/10.1093/aobpla/plr027

  • Wan X, Wu S, Li Z, An X, Tian Y (2020) Lipid Metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Mol Plant 13:955–983

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin YC, So J, Du Y, Lo C (2013) Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice. Physiol Plant 149:13–24

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Zhang Y, Huang S, Liu Z, Li C, Feng H (2020) Defect in Brnym1, a magnesium-dechelatase protein, causes a stay-green phenotype in an EMS-mutagenized Chinese cabbage (Brassica campestris L. ssp. pekinensis) line. Hortic Res 7:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Owen HA, Dobritsa AA (2021) Dynamic changes in primexine during the tetrad stage of pollen development. Plant Physiol 187:2393–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H-h, Chen L, Xu F-q, Guo W-s, Wang S, Yang Z-n, Zhang S (2017) ACOS5 is required for primexine formation and exine pattern formation during microsporogenesis in Arabidopsis. J Plant Biol 60:404–412

    Article  CAS  Google Scholar 

  • Xu Y, Caldo KMP, Holic R, Mietkiewska E, Ozga J, Rizvi SM, Chen G, Weselake RJ (2019) Engineering Arabidopsis long-chain acyl-CoA synthetase 9 variants with enhanced enzyme activity. Biochem J 476:151–164

    Article  CAS  PubMed  Google Scholar 

  • Xue JS, Zhang B, Zhan H, Lv YL, Jia XL, Wang T, Yang NY, Lou YX, Zhang ZB, Hu WJ, Gui J, Cao J, Xu P, Zhou Y, Hu JF, Li L, Yang ZN (2020) Phenylpropanoid derivatives are essential components of sporopollenin in vascular plants. Mol Plant 13:1644–1653

    Article  CAS  PubMed  Google Scholar 

  • Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Tu J, Fu T (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J 63:925–938

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, An D, Cao Y, Yu H, Zhu Y, Mei Y, Zhang B, Wang L (2021) Development and application of KASP markers associated with Restorer-of-fertility gene in Capsicum annuum L. Physiol Mol Biol Plants 27:2757–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Liu Z, Ji R, Feng H (2017) Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Mol Genet Genomics 292:967–990

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Zou T, Zhang K, Xiong P, Zhou F, Chen H, Li G, Zheng K, Han Y, Peng K, Zhang X, Yang S, Deng Q, Wang S, Zhu J, Liang Y, Sun C, Yu X, Liu H, Wang L, Li P, Li S (2022) DEAP1 encodes a fasciclin-like arabinogalactan protein required for male fertility in rice. J Integr Plant Biol 64:1430–1447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A.P. Mengnan An from Shenyang Agricultural University and Dr. Juan Huang from CAS Center for Excellence in Molecular Plant Sciences for providing ER marker, and Prof. Zhongnan Yang from Shanghai Normal University for providing the acos5-2 mutant. The research was supported by the National Natural Science Foundation of China (Grant No. 31730082).

Funding

National Natural Science Foundation of China, 31730082, Hui Feng.

Author information

Authors and Affiliations

Authors

Contributions

HF, SH and JZ designed the experiments. JZ conducted the experiments and wrote the manuscript; SD assisted in the screening of mutants and the construction of F2 population. YZ, GS and YX assisted in the data analysis. HF and BF revised the manuscript. All the authors approved the final manuscript.

Corresponding author

Correspondence to Hui Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Annaliese S. Mason.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2510 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Dong, S., Fang, B. et al. BrACOS5 mutations induced male sterility via impeding pollen exine formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 136, 6 (2023). https://doi.org/10.1007/s00122-023-04291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04291-4

Navigation