Skip to main content
Log in

Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel major QTL for FHB resistance was mapped to a 6.8 Mb region on chromosome 2D in a Chinese wheat cultivar Ji5265, and diagnostic KASP markers were developed for detecting it in a worldwide wheat collection.

Abstract

Fusarium head blight (FHB) is a serious disease in wheat (Triticum aestivum L.) and causes significant reductions in grain yield and quality worldwide. Breeding for FHB resistance is the most effective strategy to minimize the losses caused by FHB; therefore, identification of major quantitative trait loci (QTLs) conferring FHB resistance and development of diagnostic markers for the QTLs are prerequisites for marker-assisted selection (MAS). Ji5265 is a Chinese wheat cultivar resistant to FHB in multiple environments. An F6 population of 179 recombinant inbred lines (RILs) was developed from Ji5265 × Wheaton. The population was genotyped by genotyping-by-sequencing (GBS) and phenotyped for FHB Type II resistance in greenhouses. A major QTL, designated as QFhb-2DL, was mapped in a 6.8 Mb region between the markers GBS10238 and GBS12056 on the long arm of chromosome 2D in Ji5265 and explained ~ 30% of the phenotypic variation for FHB resistance. The effect of QFhb-2DL on FHB resistance was validated using near-isogenic lines (NILs) derived from residual heterozygotes from an F6 RIL of Ji5265 × Wheaton. The two flanking markers were converted into Kompetitive allele-specific PCR (KASP) markers (KASP10238 and KASP12056) and validated to be diagnostic in a collection of 2,065 wheat accessions. These results indicate that QFhb-2DL is a novel major QTL for resistance to FHB spread within a spike (Type II) and the two KASP markers can be used for MAS to improve wheat FHB resistance in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All the data are included in the manuscript and the supplementary information.

References

  • Agostinelli AM, Clark AJ, Brown-Guedira G, van Sanford DA (2012) Optimizing phenotypic and genotypic selection for Fusarium head blight resistance in wheat. Euphytica 186:115–126

    Article  Google Scholar 

  • Bai GH, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89:343–348

    Article  CAS  PubMed  Google Scholar 

  • Bai GH, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  CAS  PubMed  Google Scholar 

  • Bai GH, Shaner G, Ohm H (2000) Inheritance of resistance to Fusarium graminearum in wheat. Theor Appl Genet 100:1–8

    Article  Google Scholar 

  • Bai GH, Su ZQ, Cai J (2018) Wheat resistance to Fusarium head blight. Can J Plant Pathol 40:336–346

    Article  Google Scholar 

  • Cainong JC, Bockus WW, Feng YG, Chen PD, Qi LL, Sehgal SK, Danilova TV, Koo DH, Friebe B, Gill BS (2015) Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet 128:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell ALT (2009) Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol 150:1434–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Zhang ZL, Sun YY, Li DS, Gao DR, Zhan KH, Cheng SH (2021) Identification of quantitative trait loci for Fusarium head blight (FHB) resistance in the cross between wheat landrace N553 and elite cultivar Yangmai 13. Mol Breed 41(3):1–13

    CAS  Google Scholar 

  • Chen YM, Song WJ, Xie XM, Wang ZH, Guan PF, Peng HR, Jiao YN, Ni ZF, Sun QX, Guo WL (2020) A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant 13:1694–1708

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Fan XL, Zhao CH, Zhang W, Chen M, Ji J, Li JM (2014) A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet 15:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuthbert PA, Somers DJ, Brule-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A (2006) Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472

    Article  CAS  PubMed  Google Scholar 

  • Ding XH, Cao YL, Huang LL, Zhao J, Xu CG, Li XH, Wang SP (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dweba CC, Figlan S, Shimelis HA, Motaung TE, Sydenham S, Mwadzingeni L, Tsilo TJ (2017) Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Prot 91:114–122

    Article  CAS  Google Scholar 

  • Gaire R, Sneller C, Brown-Guedira G, Van Sanford DA, Mohammadi M, Kolb FL, Olson E, Sorrells M, Rutkoski J (2021) Genetic trends in Fusarium head blight resistance due to 20 years of winter wheat breeding and cooperative testing in the Northern US. Plant Dis. https://doi.org/10.1094/PDIS-04-21-0891-SRv

    Article  PubMed  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhang XL, Hou YL, Cai JJ, Shen XR, Zhou TT, Xu HH, Ohm HW, Wang HW, Li AF, Han FP, Wang HG, Kong LR (2015) High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet 128:2301–2316

    Article  PubMed  CAS  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  CAS  PubMed  Google Scholar 

  • Hao YF, Rasheed A, Zhu ZW, Wulff BBH, He ZH (2020) Harnessing wheat Fhb1 for Fusarium resistance. Trends Plant Sci 25:1–3

    Article  CAS  PubMed  Google Scholar 

  • He JF, Zhao XQ, Laroche A, Lu ZX, Liu HK, Li ZQ (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  • He XY, Lillemo M, Shi JR, Wu JR, Bjornstad A, Belova T, Dreisigacker S, Duveiller E, Singh P (2016) QTL characterization of Fusarium head blight resistance in CIMMYT bread wheat line Soru#1. PLoS ONE 11:e0158052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  CAS  Google Scholar 

  • Jiang GL, Shi JR, Ward RW (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. Theor Appl Genet 116:3–13

    Article  CAS  PubMed  Google Scholar 

  • Jin F, Bai GH, Zhang DD, Dong YH, Ma LJ, Bockus W, Dowell F (2014) Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected US winter wheat. Phytopathology 104:472–478

    Article  CAS  PubMed  Google Scholar 

  • Jin F, Zhang DD, Bockus W, Baenziger PS, Carver B, Bai GH (2013) Fusarium head blight resistance in US Winter wheat cultivars and elite breeding lines. Crop Sci 53:2006–2013

    Article  Google Scholar 

  • Kage U, Karre S, Kushalappa AC, McCartney C (2017a) Identification and characterization of a Fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnol J 15:447–457

    Article  CAS  PubMed  Google Scholar 

  • Kage U, Yogendra KN, Kushalappa AC (2017b) TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Sci Rep 7:42596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur B, Mavi GS, Gill MS, Saini DK (2020) Utilization of KASP technology for wheat improvement. Cereal Res Commun 48:409–421

    Article  CAS  Google Scholar 

  • Kim C, Guo H, Kong WQ, Chandnani R, Shuang LS, Paterson AH (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22

    Article  CAS  PubMed  Google Scholar 

  • Li GQ, Zhou JY, Jia HY, Gao ZX, Fan M, Luo YJ, Zhao PT, Xue SL, Li N, Yuan Y, Ma SW, Kong ZX, Jia L, An X, Jiang G, Liu WX, Cao WJ, Zhang RR, Fan JC, Xu XW, Liu YF, Kong QQ, Zheng SH, Wang Y, Qin B, Cao SY, Ding YX, Shi JX, Yan HS, Wang X, Ran CF, Ma ZQ (2019) Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet 51:1106–1112

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibai population. II: Type I resistance. Theor Appl Genet 112:528–535

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Christopher MD, Griffey CA, Hall MD, Gundrum PG, Brooks WS (2012) Molecular characterization of resistance to Fusarium head blight in U.S. soft red winter wheat breeding line VA00W-38. Crop Sci 52:2283–2292

    Article  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013a) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu QX, Lillemo M, Skinnes H, He XY, Shi JR, Ji F, Dong YH, Bjornstad A (2013b) Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line “Shanghai-3/Catbird.” Theor Appl Genet 126:317–334

    Article  CAS  PubMed  Google Scholar 

  • Ma ZQ, Xie Q, Li GQ, Jia HY, Zhou JY, Kong ZX, Li N, Yuan Y (2020) Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor Appl Genet 133:1541–1568

    Article  PubMed  Google Scholar 

  • Mardi M, Buerstmayr H, Ghareyazie B, Lemmens M, Mohammadi SA, Nolz R, Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in wheat using a ’Wangshuibai’-derived population. Plant Breed 124:329–333

    Article  Google Scholar 

  • Mascher M, Wu S, St. Amand P, Stein N, Poland J, (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8(10):e76925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Sanford D (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728

    Article  PubMed  Google Scholar 

  • Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Google Scholar 

  • Mesterhazy A (2020) Updating the breeding philosophy of wheat to Fusarium head blight (FHB): resistance components, QTL identification, and phenotyping—a review. Plants (basel) 9:1702

    Article  CAS  Google Scholar 

  • Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JDG, Parker JE (2002) Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14:979–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PloS One 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Rawat N, Pumphrey MO, Liu SX, Zhang XF, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48:1576–1580

    Article  CAS  PubMed  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5:291–317

    Article  Google Scholar 

  • Shirasu K, Lahaye T, Tan MW, Zhou FS, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366

    Article  CAS  PubMed  Google Scholar 

  • Singh L, Anderson JA, Chen JL, Gill BS, Tiwari VK, Rawat N (2019) Development and validation of a perfect KASP marker for Fusarium head blight resistance gene Fhb1 in wheat. Plant Pathol J 35:200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  CAS  PubMed  Google Scholar 

  • Song MY, Kim CY, Han M, Ryu HS, Lee SK, Sun L, He ZH, Seo YS, Canal P, Ronald PC, Jeon JS (2013) Differential requirement of Oryza sativa RAR1 in immune receptor-mediated resistance of rice to Magnaporthe oryzae. Mol Cells 35:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayr H (2017) Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop Plant Pathol 42:165–174

    Article  Google Scholar 

  • Su ZQ, Bernardo A, Tian B, Chen H, Wang S, Ma HX, Cai SB, Liu DT, Zhang DD, Li T, Trick H, St Amand P, Yu JM, Zhang ZY, Bai GH (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Su ZQ, Jin SJ, Zhang DD, Bai GH (2018) Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet 131:2371–2380

    Article  CAS  PubMed  Google Scholar 

  • Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805–811

    Article  CAS  Google Scholar 

  • Wang HW, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K, Lyu ZF, Chen LY, Xu SS, Guo J, Li M, Su PS, Li XF, Wang GP, Bo CY, Fang XJ, Zhuang WW, Cheng XX, Wu JW, Dong LH, Chen WY, Li W, Xiao GL, Zhao JX, Hao YC, Xu Y, Gao Y, Liu WJ, Liu YH, Yin HY, Li JZ, Li X, Zhao Y, Wang XQ, Ni F, Ma X, Li AF, Xu SS, Bai GH, Nevo E, Gao CX, Ohm H, Kong LR (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435

    Article  CAS  PubMed  Google Scholar 

  • Wang RF, An DG, Hu CS, Li LH, Zhang YM, Jia YG, Tong YP (2011) Relationship between nitrogen uptake and use efficiency of winter wheat grown in the North China Plain. Crop Pasture Sci 62:504–514

    Article  Google Scholar 

  • Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2008) Functions of the ERF transcription factor family in plants. Botany 86:969–977

    Article  CAS  Google Scholar 

  • Xue SL, Li GQ, Jia HY, Xu F, Lin F, Tang MZ, Wang Y, An X, Xu HB, Zhang LX, Kong ZX, Ma ZQ (2010) Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:147–156

    Article  PubMed  Google Scholar 

  • Xue SL, Xu F, Tang MZ, Zhou Y, Li GQ, An X, Lin F, Xu HB, Jia HY, Zhang LX, Kong ZX, Ma ZQ (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:1055–1063

    Article  PubMed  Google Scholar 

  • Zhang XH, Pan HY, Bai GH (2012) Quantitative trait loci responsible for Fusarium head blight resistance in Chinese landrace Baishanyuehuang. Theor Appl Genet 125:495–502

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Hua C, Li L, Sun ZX, Yuan MM, Bai GH, Humphreys G, Li T (2021) Integration of meta-QTL discovery with omics: towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop J 9:739–749

    Article  Google Scholar 

  • Zhu ZW, Chen L, Zhang W, Yang LJ, Zhu WW, Li JH, Liu YK, Tong HW, Fu LP, Liu JD, Rasheed A, Xia XC, He ZH, Hao YF, Gao CB (2020) Genome-wide association analysis of Fusarium head blight resistance in Chinese elite wheat lines. Front Plant Sci 11:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu ZW, Bonnett D, Ellis M, He XY, Heslot N, Dreisigacker S, Gao CB, Singh P (2016) Characterization of Fusarium head blight resistance in a CIMMYT synthetic-derived bread wheat line. Euphytica 208:367–375

    Article  Google Scholar 

  • Zhu ZW, Hao YF, Mergoum M, Bai GH, Humphreys G, Cloutier S, Xia XC, He ZH (2019) Breeding wheat for resistance to Fusarium head blight in the global north: China, USA, and Canada. Crop J 7:730–738

    Article  Google Scholar 

Download references

Acknowledgements

This is contribution number 22-160-J from the Kansas Agricultural Experiment Station. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.

Funding

The funding was provided by Talent Funds of China Agricultural University (2020RC017), US Wheat and Barley Scab Initiative and USDA Agriculture and Food Research Initiative Competitive Grant (Grant No. 2022-68013-36439) (WheatCAP) from USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

Bai GH and Su ZQ designed the research; Su ZQ, Li HW, Zhang FP, Zhao JX, and Bernardo A performed the research; Su ZQ, Li HW, Zhang FP, and St. Amand P analyzed the data; Li HW, Zhang FP, Su ZQ, Ni ZF, Sun QX, and Bai GH wrote the paper. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Guihua Bai or Zhenqi Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Additional information

Communicated by Hermann Buerstmayr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 30 kb)

Fig. S1

Allele distribution of the parents and the RILs at KASP12056 marker locus showing clear separation among homozygous resistant and susceptible genotypes and heterozygotes. Blue and green dots represent homozygous resistant and homozygous susceptible genotypes, respectively, and cyan dots represent heterozygous genotypes. Black dots and crosses represent H2O controls and QFhb-2DL deletion lines, respectively.

Supplementary file2 (JPEG 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, F., Zhao, J. et al. Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. Theor Appl Genet 135, 1867–1877 (2022). https://doi.org/10.1007/s00122-022-04080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04080-5

Navigation