Skip to main content
Log in

Genomic prediction with allele dosage information in highly polyploid species

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Including allele, dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels.

Abstract

Several studies have shown how to leverage allele dosage information to improve the accuracy of genomic selection models in autotetraploid. In this study, we expanded the methodology used for genomic selection in autotetraploid to higher (and mixed) ploidy levels. We adapted the models to build covariance matrices of both additive and digenic dominance effects that are subsequently used in genomic selection models. We applied these models using estimates of ploidy and allele dosage to sugarcane and sweet potato datasets and validated our results by also applying the models in simulated data. For the simulated datasets, including allele dosage information led up to 140% higher mean predictive abilities in comparison to using diploidized markers. Including dominance effects were highly advantageous when using diploidized markers, leading to mean predictive abilities which were up to 115% higher in comparison to only including additive effects. When the frequency of heterozygous genotypes in the population was low, such as in the sugarcane and sweet potato datasets, there was little advantage in including allele dosage information in the models. Overall, we show that including allele dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amadeu RR, Ferrão LFV, de Oliveira IB, Benevenuto J, Endelman JB et al (2020) Impact of dominance effects on autotetraploid genomic prediction. Crop Sci 60:656–665

  • Bastien M, Boudhrioua C, Fortin G, Belzile F (2018) Exploring the potential and limitations of genotyping-by-sequencing for SNP discovery and genotyping in tetraploid potato. Genome 61:449–456

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (2010) Breeding for Quantitative Traits in Plants. Stemma Press, Woodsbury, MN

    Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for Genomewide Selection for Quantitative Traits in Maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Blischak PD, Kubatko LS, Wolfe AD (2018) SNP genotyping and parameter estimation in polyploids using low-coverage sequencing data. Bioinformatics 34:407–415

    Article  CAS  PubMed  Google Scholar 

  • Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE et al (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7:347–354

    Article  CAS  PubMed  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. 160

  • Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J et al (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365

    Article  CAS  PubMed  Google Scholar 

  • Cheavegatti-Gianotto A, de Abreu HMC, Arruda P, Bespalhok Filho JC, Burnquist WL et al (2011) Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil. Tropical Plant Biology 4:62–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GK, Marjoram P, Wall JD (2009) Fast and flexible simulation of DNA sequence data. Genome Res 19:136–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centre de coopération internationale en recherche agronomique pour le développement (CIRAD). https://www.cirad.fr/en/our-research/tropical-supply-chains/sugarcane/context-and-issues

  • Clark LV, Lipka AE, Sacks EJ (2019) polyRAD: Genotype calling with uncertainty from sequencing data in polyploids and diploids. G3: Genes. Genomes, Genetics 9:663–673

    CAS  Google Scholar 

  • Combs E, Bernardo R (2013) Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. Plant Genome 6

  • Costa EA, Anoni CO, Mancini MC, Santos FRC, Marconi TG et al (2016) QTL mapping including codominant SNP markers with ploidy level information in a sugarcane progeny. Euphytica 211:1–16

    Article  Google Scholar 

  • Crossa J, G. de los Campos, P. Pérez, D. Gianola, J. Burgueño, et al (2010) Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers. Genetics 186:713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damesa TM, Möhring J, Worku M, Piepho H-P (2017) One Step at a Time: Stage-Wise Analysis of a Series of Experiments. Agron J 109:845–857

    Article  Google Scholar 

  • de Bem Oliveira I, Resende MF, Ferrao F, Amadeu R, Endelman J et al (2018) Genomic prediction of autotetraploids; influence of relationship matrices, allele dosage, and continuous genotyping calls in phenotype prediction. bioRxiv

  • Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23:40–69

    Article  PubMed  Google Scholar 

  • Duhnen A, Gras A, Teyssèdre S, Romestant M, Claustres B et al (2017) Genomic Selection for Yield and Seed Protein Content in Soybean: A Study of Breeding Program Data and Assessment of Prediction Accuracy. Crop Sci 57:1325

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS ONE 6:e19379

  • Endelman JB, Carley CAS, Bethke PC, Coombs JJ, Clough ME et al (2018) Genetic Variance Partitioning and Genome-Wide Prediction with Allele Dosage Information in Autotetraploid Potato. Genetics 209:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics. Longman, Harlow, UK

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (1997) FAOSTAT statistical database. FAO, Rome

  • Freyre R, Iwanaga M, Orjeda G (1991) Use of Ipomoea trifida (HBK.) G. Don germ plasm for sweet-potato improvement. 2. Fertility of synthetic hexaploids and triploids with 2 n gametes of I. trifida, and their interspecific crossability with sweet potato. Genome 34:209–214

    Article  Google Scholar 

  • Gallais A (2003) Quantitative genetics and breeding methods in autopolyploid plants. Editions Quae

  • Garcia AAF, Mollinari M, Marconi TG, Serang OR, Silva RR et al (2013) SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Sci Rep 3:3399

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaynor RC, Gorjanc G, Hickey JM (2021) AlphaSimR: an R package for breeding program simulations. G3 Genes Genomes Genetics 11

  • Gerard D, Ferrão LFV, Garcia AAF, Stephens M (2018) Genotyping Polyploids from Messy Sequencing Data. Genetics 210:789

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouy M, Rousselle Y, Bastianelli D, Lecomte P, Bonnal L et al (2013) Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet 126:2575–2586

    Article  CAS  PubMed  Google Scholar 

  • Grativol C, Regulski M, Bertalan M, McCombie WR, Da Silva FR et al (2014) Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum. Plant J 79:162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravois KA, Milligan SB (1992) Genetic Relationships between Fiber and Sugarcane Yield Components 32:62–67

    Google Scholar 

  • Grüneberg W, Mwanga R, Andrade M, Espinoza J (2009) Selection methods. Part 5: breeding clonally propagated crops. Plant Breed Farm Participation, pp 275–322

  • Gutierrez AF, Hoy JW, Kimbeng CA, Baisakh N (2018) Identification of Genomic Regions Controlling Leaf Scald Resistance in Sugarcane Using a Bi-parental Mapping Population and Selective Genotyping by Sequencing. Front Plant Sci 9:877

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawkins C, Yu L-X (2018) Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop J

  • Hayes BJ, Wei X, Joyce P, Atkin F, Deomano E et al (2021) Accuracy of genomic prediction of complex traits in sugarcane. Theor Appl Genet 134:1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009a) Genomic Selection for Crop Improvement All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval syst. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Jackson DM, Harrison HF, Jarret RL, Wadl PA (2018) Color analysis of storage roots from the USDA, ARS sweetpotato (Ipomoea batatas) germplasm collection. Genet Resour Crop Evol 65:1217–1236

    Article  CAS  Google Scholar 

  • Katayama K, Kobayashi A, Sakai T, Kuranouchi T, Kai Y (2017) Recent progress in sweetpotato breeding and cultivars for diverse applications in Japan. Breed Sci 67:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian L, Jacobson A, Zhong S, Bernardo R (2014) Genomewide Prediction Accuracy within 969 Maize Biparental Populations. Crop Sci 54:1514

    Article  Google Scholar 

  • Matias FI, Xavier Meireles KG, Nagamatsu ST, Lima Barrios SC, Borges do Valle C et al (2019) Expected genotype quality and diploidized marker data from genotyping‐by‐sequencing of Urochloa spp. Tetraploids. Plant Genome 12:190002

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan SB, Gravois KA, Bischoff KP, Martin FA (1990) Crop Effects on Broad-Sense Heritabilities and Genetic Variances of Sugarcane Yield Components. Crop Sci 30:344

    Article  Google Scholar 

  • Mollinari M, Olukolu BA, da Pereira GS, Khan A, Gemenet D et al (2020) Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping. G3: Genes|Genomes|Genetics 10:281

  • Mollinari M, Serang O (2015) Quantitative SNP genotyping of polyploids with MassARRAY and other platforms. In: Batley J (ed) Plant Genotyping. Methods in Molecular Biology (Methods and Protocols) 1245

  • Oracion M, Niwa K, Shiotani I (1990) Cytological analysis of tetraploid hybrids between sweet potato and diploid Ipomoea trifida (HBK) Don. Theor Appl Genet 80:617–624

    Article  CAS  PubMed  Google Scholar 

  • Park S, Jackson P, Berding N, Inmam-Bamber G (2007) Conventional Breeding Practices within the Australian Sugarcane Breeding Program 29:10

    Google Scholar 

  • Pereira GS, Garcia AAF, Margarido GRA (2018) A fully automated pipeline for quantitative genotype calling from next generation sequencing data in autopolyploids. BMC Bioinformatics 19:398–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-Sequencing for Plant Breeding and Genetics. The Plant Genome Journal 5:92

    CAS  Google Scholar 

  • Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA et al (2012) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    Article  PubMed  Google Scholar 

  • Robertson A (1960) A theory of limits in artificial selection. Proc R Soc London Ser B Biol Sci 153:234–249

  • Serang O, Mollinari M, Garcia AAF (2012) Efficient exact maximum a posteriori computation for Bayesian SNP genotyping in polyploids. PLOS ONE 7:e30906

  • Shiotani I (1988) Genomic structure and the gene flow in sweet potato and related species, pp. 61–73

  • Slater AT, Cogan NOI, Forster JW, Hayes BJ, Daetwyler HD (2016) Improving genetic gain with genomic selection in autotetraploid potato. Plant Genome 9

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc: Ser B (methodol) 36:111–133

    Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Nat Acad Sci 97(13):7051–7057

  • Tena E, Mekbib F, Ayana A (2016) Heritability and Correlation among Sugarcane (Saccharum spp.) Yield and Some Agronomic and Sugar Quality Traits in Ethiopia. Am J Plant Sci 07:1453–1477

    Article  CAS  Google Scholar 

  • Uitdewilligen JG, Wolters AMA, Bjorn B, Borm TJ, Visser RG et al (2015) Correction: a next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PloS one 10:e0141940

  • van Geest G, Voorrips RE, Esselink D, Post A, Visser RG et al (2017) Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array. BMC Genomics 18:1–12

    Google Scholar 

  • Van Raden PM (2008a) Efficient Methods to Compute Genomic Predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Vitezica ZG, Legarra A, Toro MA, Varona L (2017) Orthogonal estimates of variances for additive, dominance, and epistatic effects in populations. Genetics 206:1297–1307

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss-Fels KP, Wei X, Ross EM, Frisch M, Aitken KS et al (2021) Strategies and considerations for implementing genomic selection to improve traits with additive and non-additive genetic architectures in sugarcane breeding. Theor Appl Genet 134:1493–1511

    Article  CAS  PubMed  Google Scholar 

  • Werner CR, Gaynor RC, Sargent DJ, Lillo A, Gorjanc G et al. (2020) Genomic selection strategies for clonally propagated crops. bioRxiv 2020.06.15.152017

  • Wu S, Lau KH, Cao Q, Hamilton JP, Sun H et al (2018) Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun 9:1–12

    Article  CAS  Google Scholar 

  • Yang X, Sood S, Glynn N, Islam MS, Comstock J et al. (2017) Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance. Mol Breed 37

  • Zhou M (2013) Conventional Sugarcane Breeding in South Africa: Progress and Future Prospects. Am J Plant Sci 04:189–197

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the Brazilian National Council for Scientific and Technological Development (CNPq) and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) —Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

LGB, APS, and GRM conceived the study. APS provided the genotyping by sequencing raw read data for the sugarcane population. LGB and VHM performed the SNP calling in the sugarcane and sweet potato datasets. LGB expanded and implemented the genomic selection models and designed the plant breeding program simulations. All authors read and approved the manuscript.

Corresponding author

Correspondence to Gabriel R. A. Margarido.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Availability of data and code

The sugarcane and sweet potato datasets as well as the code for obtaining genomic covariance matrices of additive and digenic dominance effects can be found on the Github repository https://github.com/Lorenagb/GS_HighlyPolyploid. The code for generating all four simulated datasets can also be found on the repository.

Additional information

Communicated by Jeffrey Endelman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, L.G., Mello, V.H., Souza, A.P. et al. Genomic prediction with allele dosage information in highly polyploid species. Theor Appl Genet 135, 723–739 (2022). https://doi.org/10.1007/s00122-021-03994-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03994-w

Navigation