Skip to main content
Log in

BrWAX2 plays an essential role in cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Map-based cloning was used to identify the BrWAX2 gene, which was involved in the cuticular wax biosynthesis. The malfunction of BrWAX2 together with other reduced expression of genes in alkane-forming pathway caused the glossy phenotype.

Abstract

Cuticular wax covering the outer plant surface plays various roles in protecting against biotic and abiotic stresses. Wax-less mutant shows glossy in stem and leaf surface and plays important roles in enriching Chinese cabbage germplasm resources for breeding brilliant green varieties. However, genes responsible for the glossy trait in Chinese cabbage are rarely reported. In this study, we identified a glossy Chinese cabbage line Y1211-1. Genetic analysis indicated that the glossy trait in Y1211-1 was controlled by a single recessive locus, BrWAX2 (Brassica rapa WAX 2). Using bulked segregant sequencing (BSA-Seq) and kompetitive allele-specific PCR (KASP) assays, BrWAX2 was fine-mapped to an interval of 100.78 kb. Functional annotation analysis, expression analysis, and sequence variation analysis revealed that Bra032670, homologous to CER1 in Arabidopsis, was the most likely candidate gene for BrWAX2. The gene Bra032670 was absent in glossy mutant. Cuticular wax composition analysis and RNA-Seq analysis suggested that the absence of BrWAX2 together with the decreased expression of other genes in alkane-forming pathway reduced the wax amount and caused the glossy phenotype. Furthermore, we developed and validated the functional marker BrWAX2-sp for BrWAX2. Overall, these results provide insight into the molecular mechanism underlying cuticular wax biosynthesis and reveal valuable information for marker-assisted selection (MAS) breeding in Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2016) Differential expression of RNA-Seq data at the gene level-the DESeq package. European Molecular Biology Laboratory

  • Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci U S A 105:14727–14731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L (2009) Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard A, Joubes J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129

    Article  CAS  PubMed  Google Scholar 

  • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubes J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubes J (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debono A, Yeats TH, Rose JK, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Ji J, Yang L, Fang Z, Zhuang M, Zhang Y, Lv H, Wang Y, Sun P, Tang J, Liu D, Liu Y, Li Z (2019) Fine-mapping and transcriptome analysis of BoGL-3, a wax-less gene in cabbage (Brassica oleracea L. var. capitata). Mol Genet Genomics 294:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, Jetter R (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, Domergue F, Fernandez AM, Beaudoin F, Napier JA, Kunst L, Joubes J (2015) ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol 167:682–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heredia A (2003) Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta 1620:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooker TS, Lam P, Zheng H, Kunst L (2007) A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell 19:904–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacson T, Kosma DK, Matas AJ, Buda GJ, He Y, Yu B, Pravitasari A, Batteas JD, Stark RE, Jenks MA, Rose JK (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J 60:363–377

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC (2012) Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53:1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49

    CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Springer, Berlin, pp 125–130

    Google Scholar 

  • Krolikowski KA, Victor JL, Wagler TN, Lolle SJ, Pruitt RE (2003) Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD. Plant J 35:501–511

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Suh MC (2015) Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep 34:557–572

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

  • Li-Beissona Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Plant Biol 106:22008–22013

    Google Scholar 

  • Liu L, Guo W, Zhu X, Zhang T (2003) Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor Appl Genet 106:461–469

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Tang J, Liu Z, Dong X, Zhuang M, Zhang Y, Lv H, Sun P, Liu Y, Li Z, Ye Z, Fang Z, Yang L (2017a) Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata). BMC Plant Biol 17:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Fang Z, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Sun P, Tang J, Liu D, Zhang Z, Yang L (2017c) Fine-mapping and analysis of Cgl1, a gene conferring glossy trait in cabbage (Brassica oleracea L. var. capitata). Front Plant Sci 8:239

    PubMed  PubMed Central  Google Scholar 

  • Liu D, Dong X, Liu Z, Tang J, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Fang Z, Yang L (2018) Fine mapping and candidate gene identification for wax biosynthesis locus, BoWax1 in Brassica oleracea L. var. capitata. Front Plant Sci 9:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Tang J, Liu Z, Dong X, Zhuang M, Zhang Y, Lv H, Sun P, Liu Y, Li Z, Ye Z, Fang Z, Yang L (2017b) Fine mapping of BoGL1, a gene controlling the glossy green trait in cabbage (Brassica oleracea L. Var. capitata). Mol Breed 37

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Zhao H, Des Marais DL, Parsons EP, Wen X, Xu X, Bangarusamy DK, Wang G, Rowland O, Juenger T, Bressan RA, Jenks MA (2012) Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol 159:930–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo B, Xue XY, Hu WL, Wang LJ, Chen XY (2007) An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol 48:1790–1802

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Menard R, Verdier G, Ors M, Erhardt M, Beisson F, Shen WH (2014) Histone H2B monoubiquitination is involved in the regulation of cutin and wax composition in Arabidopsis thaliana. Plant Cell Physiol 55:455–466

    Article  CAS  PubMed  Google Scholar 

  • Ooijen J, Van JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations

  • Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    Article  CAS  PubMed  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  PubMed  Google Scholar 

  • Pu Y, Gao J, Guo Y, Liu T, Zhu L, Xu P, Yi B, Wen J, Tu J, Ma C, Fu T, Zou J, Shen J (2013) A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC Plant Biol 13:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, Zhang D (2010) Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Report 28:597–604

    Article  CAS  Google Scholar 

  • Razeq FM, Kosma DK, Rowland O, Molina I (2014) Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106:188–196

    Article  CAS  PubMed  Google Scholar 

  • Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Mangalam AK, Dwivedi S, Naik S (1998) Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques 24:318–319

    Article  CAS  PubMed  Google Scholar 

  • Su T, Yu S, Zhang JWF, Yu Y, Zhang D, Zhao X, Wang W (2014) Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Rep 33:648–659

    Article  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Liu D, Liu Z, Yang L, Fang Z, Liu Y, Zhuang M, Zhang Y, Lu H, Yi D, Sun P (2015) Preliminary study of the characteristics of several glossy cabbage ( Brassica oleracea var. capitata L.) mutants. Horticult Plant J

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Li Y, Xie F, Kuang H, Wan Z (2017) Cloning of the Brcer1 gene involved in cuticular wax production in a glossy mutant of non-heading Chinese cabbage (Brassica rapa L. var. communis). Mol Breed 37:13

    Article  Google Scholar 

  • Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720-724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu R, Li S, He S, Wassmann F, Yu C, Qin G, Schreiber L, Qu LJ, Gu H (2011) CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23:3392–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zeisler V, Schreiber L, Gao J, Hu K, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2017) Overexpression of the novel Arabidopsis gene At5g02890 alters inflorescence stem wax composition and affects phytohormone homeostasis. Front Plant Sci 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Xiao S, Kim J, Lung SC, Chen L, Tanner JA, Suh MC, Chye ML (2014) Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J Exp Bot 65:5473–5483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Yu W, Wei X, Wang Z, Zhao Y, Zhao X, Tian B, Yuan Y, Zhang X (2020) An extended KASP-SNP resource for molecular breeding in Chinese cabbage(Brassica rapa L. ssp. pekinensis). PLoS ONE 15:e0240042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Tian X, Wang Z, Wei X, Zhao Y, Su H, Zhao X, Tian B, Yuan Y, Zhang XW (2021) Fine mapping and candidate gene identification of a white flower gene BrWF3 in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Front Plant Sci 12:646222

    Article  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu Z, Wang P, Wang Q, Yang S, Feng H (2013) Fine mapping of Br Wax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 32:867–874

    Article  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Tai X, Ren Y, Chen J, Bo T (2019) Genome-wide analysis of coding and long non-coding RNAs involved in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata). Int J Mol Sci 20:2820

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Zhongyuan Scholar Program (202101510003), the Modern Agro-Industry Technology Research System (CARS-23-G-16), the National Science Foundation of China (31872945), Sci-Tech Innovation Team of Henan Academy of Agricultural Sciences (2021TD06), and Programs for Science and Technology Development of Henan Province (212102110126).

Author information

Authors and Affiliations

Authors

Contributions

YY, X-WZ, and BT conceptualized and designed the experiments. SY, HL, and XW performed the experiments and analyzed the data. YZ, ZW, HS, and XZ participated in phenotypic assays and genetic analysis. SY and HL drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Baoming Tian, Xiao-Wei Zhang or Yuxiang Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that this study complies with the current laws of the countries in which the experiments were performed.

Accession codes

The raw data from BSA-Seq analysis have been deposited into the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/) with accession number PRJNA751715. The raw data from transcriptome analysis were deposited in the Sequence Read Archive under accession number PRJNA751924. The CDS sequence of Brwax2 from waxy R16-11 was deposited in GenBank under accession number MW707248.

Additional information

Communicated by Carlos F. Quiros.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 11295 kb)

Supplementary file2 (XLSX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Liu, H., Wei, X. et al. BrWAX2 plays an essential role in cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 135, 693–707 (2022). https://doi.org/10.1007/s00122-021-03993-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03993-x

Navigation