Skip to main content
Log in

Genome-based prediction of agronomic traits in spring wheat under conventional and organic management systems

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Using phenotype data of three spring wheat populations evaluated at 6–15 environments under two management systems, we found moderate to very high prediction accuracies across seven traits. The phenotype data collected under an organic management system effectively predicted the performance of lines in the conventional management and vice versa.

Abstract

There is growing interest in developing wheat cultivars specifically for organic agriculture, but we are not aware of the effect of organic management on the predictive ability of genomic selection (GS). Here, we evaluated within populations prediction accuracies of four GS models, four combinations of training and testing sets, three reaction norm models, and three random cross-validations (CV) schemes in three populations phenotyped under organic and conventional management systems. Our study was based on a total of 578 recombinant inbred lines and varieties from three spring wheat populations, which were evaluated for seven traits at 3–9 conventionally and 3–6 organically managed field environments and genotyped either with the wheat 90 K SNP array or DArTseq. We predicted the management systems (CV0M) or environments (CV0), a subset of lines that have been evaluated in either management (CV2M) or some environments (CV2), and the performance of newly developed lines in either management (CV1M) or environments (CV1). The average prediction accuracies of the model that incorporated genotype × environment interactions with CV0 and CV2 schemes varied from 0.69 to 0.97. In the CV1 and CV1M schemes, prediction accuracies ranged from − 0.12 to 0.77 depending on the reaction norm models, the traits, and populations. In most cases, grain protein showed the highest prediction accuracies. The phenotype data collected under the organic management effectively predicted the performance of lines under conventional management and vice versa. This is the first comprehensive GS study that investigated the effect of the organic management system in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An D, Su J, Liu Q, Zhu Y, Tong Y, Li J, Jing R, Li B, Li Z (2006) Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284:73–84

    CAS  Google Scholar 

  • Arojju SK, Cao M, Trolove M, Barrett BA, Inch C, Eady C, Stewart A, Faville MJ (2020) Multi-trait genomic prediction improves predictive ability for dry matter yield and water-soluble carbohydrates in perennial ryegrass. Front Plant Sci 11:1197

    PubMed  PubMed Central  Google Scholar 

  • Asif M, Yang RC, Navabi A, Iqbal M, Kamran A, Lara EP, Randhawa H, Pozniak C, Spaner D (2015) Mapping QTL, selection differentials, and the effect of Rht-B1 under organic and conventionally managed systems in the Attila × CDC Go spring wheat mapping population. Crop Sci 55:1129–1142

    Google Scholar 

  • Baenziger PS, Salah I, Little RS, Santra DK, Regassa T, Wang MY (2011) Structuring an efficient organic wheat breeding program. Sustainability 3:1190–1205

    Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    CAS  PubMed  Google Scholar 

  • Battenfield SD, Guzmán C, Chris Gaynor R, Singh RP, Peña RJ, Dreisigacker S, Fritz AK, Poland JA (2016) Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 9. https://doi.org/10.3835/plantgenome2016.01.0005

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    CAS  PubMed  Google Scholar 

  • Bemister DH, Semagn K, Iqbal M, Randhawa H, Strelkov SE, Spaner DM (2019) Mapping QTL associated with stripe rust, leaf rust, and leaf spotting in a Canadian spring wheat population. Crop Sci 59:650–658

    Google Scholar 

  • Beukert U, Thorwarth P, Zhao Y, Longin CFH, Serfling A, Ordon F, Reif JC (2020) Comparing the potential of marker-assisted selection and genomic prediction for improving rust resistance in hybrid wheat. Front Plant Sci 11:594113–594113

    PubMed  PubMed Central  Google Scholar 

  • Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Brasier K, Ward B, Smith J, Seago J, Oakes J, Balota M, Davis P, Fountain M, Brown-Guedira G, Sneller C, Thomason W, Griffey C (2020) Identification of quantitative trait loci associated with nitrogen use efficiency in winter wheat. PLoS ONE 15:e0228775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgueno J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Google Scholar 

  • Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128:1647–1667

    PubMed  PubMed Central  Google Scholar 

  • Chen F, Gao M, Zhang J, Zuo A, Shang X, Cui D (2013) Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China. BMC Plant Biol 13:199

    PubMed  PubMed Central  Google Scholar 

  • Chen Z, Liu C, Wang Y, He T, Gao R, Xu H, Guo G, Li Y, Zhou L, Lu R, Huang J (2018) Expression analysis of nitrogen metabolism-related genes reveals differences in adaptation to low-nitrogen stress between two different barley cultivars at seedling stage. Int J Genom 2018:8152860

    Google Scholar 

  • Chen H, Bemister DH, Iqbal M, Strelkov SE, Spaner DM (2020) Mapping genomic regions controlling agronomic traits in spring wheat under conventional and organic managements. Crop Sci 60:2038–2052

    CAS  Google Scholar 

  • Clark SA, Hickey JM, van der Werf JHJ (2011) Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol 43:18

    PubMed  PubMed Central  Google Scholar 

  • Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng EH (2019) Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet 132:627–645

    PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    CAS  Google Scholar 

  • Consortium RD, Fugeray-Scarbel A, Bastien C, Dupont-Nivet M, Lemarié S (2021) Why and how to switch to genomic selection: lessons from plant and animal breeding experience. Front Genet 12:1185

    Google Scholar 

  • Crossa J, Beyene Y, Semagn K, Perez P, Hickey JM, Chen C, de los Campos G, Burgueno J, Windhausen VS, Buckler E, Jannink JL (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. Genes Genom Genet 3:1903–1926

    Google Scholar 

  • Crossa J, Jarquín D, Franco J, Pérez-Rodríguez P, Burgueño J, Saint-Pierre C, Vikram P, Sansaloni C, Petroli C, Akdemir D, Sneller C, Reynolds M, Tattaris M, Payne T, Guzman C, Peña RJ, Wenzl P, Singh S (2016) Genomic prediction of gene bank wheat landraces. Genes Genom Genet 6:1819–1834

    CAS  Google Scholar 

  • Crossa J, de los Campos G, Maccaferri M, Tuberosa R, Burgueño J, Pérez-Rodríguez P (2016) Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci 56:2193–2209

    Google Scholar 

  • Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P, Campos GDL, Montesinos-López OA (2016) Genomic prediction of genotype × environment interaction kernel regression models. Plant Genome 9(plantgenome2016.2003):0024

    Google Scholar 

  • Cuevas J, Crossa J, Montesinos-López OA, Burgueño J, Pérez-Rodríguez P, Delos Campos G (2017) Bayesian genomic prediction with genotype strong × strong environment interaction kernel models. Genes Genom Genet 7:41

    CAS  Google Scholar 

  • Das RR, Vinayan MT, Patel MB, Phagna RK, Singh SB, Shahi JP, Sarma A, Barua NS, Babu R, Seetharam K, Burgueño JA, Zaidi PH (2020) Genetic gains with rapid-cycle genomic selection for combined drought and waterlogging tolerance in tropical maize (Zea mays L.). Plant Genome 13:e20035

    CAS  PubMed  Google Scholar 

  • Dawson JC, Endelman JB, Heslot N, Crossa J, Poland J, Dreisigacker S, Manès Y, Sorrells ME, Jannink J-L (2013) The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crops Res 154:12–22

    Google Scholar 

  • Dreisigacker S, Crossa J, Pérez-Rodríguez P, Montesinos-López OA, Rosyara U, Juliana P, Mondal S, Crespo-Herrera L, Govindan V, Singh RP, Braun HJ (2021) Implementation of genomic selection in the CIMMYT global wheat program, findings from the past 10 years. Crop Breed Genet Genom 3:e210004

    Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) Perfect markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    CAS  PubMed  Google Scholar 

  • Gelli M, Mitchell SE, Liu K, Clemente TE, Weeks DP, Zhang C, Holding DR, Dweikat IM (2016) Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum. BMC Plant Biol 16:16

    PubMed  PubMed Central  Google Scholar 

  • Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9:e1001124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Kong Fm Xu, Yf ZY, Liang X, Yy W, Dg An, Ss Li (2012) QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet 124:851–865

    CAS  PubMed  Google Scholar 

  • Haile TA, Walkowiak S, N’Diaye A, Clarke JM, Hucl PJ, Cuthbert RD, Knox RE, Pozniak CJ (2021) Genomic prediction of agronomic traits in wheat using different models and cross-validation designs. Theor Appl Genet 134:381–398

    CAS  PubMed  Google Scholar 

  • Haile JK, N’Diaye A, Clarke F, Clarke J, Knox R, Rutkoski J, Bassi FM, Pozniak CJ (2018) Genomic selection for grain yield and quality traits in durum wheat. Mol Breed 38:75

  • Hayes BJ, Panozzo J, Walker CK, Choy AL, Kant S, Wong D, Tibbits J, Daetwyler HD, Rochfort S, Hayden MJ, Spangenberg GC (2017) Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes. Theor Appl Genet 130:2505–2519

    CAS  PubMed  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Google Scholar 

  • Heslot N, Akdemir D, Sorrells ME, Jannink JL (2013) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127:463–480

    PubMed  Google Scholar 

  • Ibba MI, Crossa J, Montesinos-López OA, Montesinos-López A, Juliana P, Guzman C, Delorean E, Dreisigacker S, Poland J (2020) Genome-based prediction of multiple wheat quality traits in multiple years. Plant Genome 13:e20034

    CAS  PubMed  Google Scholar 

  • Jaganathan D, Bohra A, Thudi M, Varshney RK (2020) Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theor Appl Genet 133:1791–1810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarquín D (2012) Lemes da Silva C, Gaynor RC, Poland J, Fritz A, Howard R, Battenfield S, Crossa J (2017) Increasing genomic-enabled prediction accuracy by modeling genotype × environment interactions in Kansas wheat. Plant Genome 10(plantgenome2016):0130@@@@

    Google Scholar 

  • Jarquin D, Crossa J, Lacaze X, Cheyron P, Jl D, Lorgeou J, Fc P, Guerreiro L, Perez P, Calus M, Burgueno J, Campos G (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607

    PubMed  Google Scholar 

  • Jarquin D, Howard R, Crossa J, Beyene Y, Gowda M, Martini JWR, Covarrubias Pazaran G, Burgueño J, Pacheco A, Grondona M, Wimmer V, Prasanna BM (2020) Genomic prediction enhanced sparse testing for multi-environment trials. Genes Genom Genet 10:2725

    CAS  Google Scholar 

  • Juliana P, Singh RP, Braun H-J, Huerta-Espino J, Crespo-Herrera L, Govindan V, Mondal S, Poland J, Shrestha S (2020) Genomic selection for grain yield in the CIMMYT wheat breeding program—status and perspectives. Front Plant Sci 11:1418

    Google Scholar 

  • Kirk AP, Fox SL, Entz MH (2012) Comparison of organic and conventional selection environments for spring wheat. Plant Breed 131:687–694

    Google Scholar 

  • Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, Mishra CN, Khan H, Gangadhara K, Uday G, Singh G, Singh GP (2021) Integrated genomic selection for rapid improvement of crops. Genomics 113:1070–1086

    CAS  PubMed  Google Scholar 

  • Lado B, Vázquez D, Quincke M, Silva P, Aguilar I, Gutiérrez L (2018) Resource allocation optimization with multi-trait genomic prediction for bread wheat (Triticum aestivum L.) baking quality. Theor Appl Genet 131:2719–2731

    PubMed  PubMed Central  Google Scholar 

  • Laidig F, Piepho H-P, Rentel D, Drobek T, Meyer U, Huesken A (2017) Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983–2014. Theor Appl Genet 130:223–245

    PubMed  Google Scholar 

  • Lammerts van Bueren ET, Jones SS, Tamm L, Murphy KM, Myers JR, Leifert C, Messmer MM (2011) The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. Wagen J Life Sci 58:193–205

    Google Scholar 

  • Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret FD, Gouis JL (2007) Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 115:399–415

    CAS  PubMed  Google Scholar 

  • Lian L, Jacobson A, Zhong S, Bernardo R (2014) Genomewide prediction accuracy within 969 maize biparental populations. Crop Sci 54:1514–1522

    Google Scholar 

  • Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink JL, Singh RP, Autrique E, de los Campos G (2015) Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. Genes Genom Genet 5:569–582

    Google Scholar 

  • Mason HE, Spaner D (2006) Competitive ability of wheat in conventional and organic management systems: a review of the literature. Can J Plant Sci 86:333–343

    Google Scholar 

  • Mason HE, Navabi A, Frick BL, O’Donovan JT, Spaner DM (2007) The weed-competitive ability of Canada western red spring wheat cultivars grown under organic management. Crop Sci 47:1167–1176

    Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel S, Löschenberger F, Ametz C, Pachler B, Sparry E, Bürstmayr H (2019a) Combining grain yield, protein content and protein quality by multi-trait genomic selection in bread wheat. Theor Appl Genet 132:2767–2780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel S, Löschenberger F, Ametz C, Pachler B, Sparry E, Bürstmayr H (2019b) Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding. Theor Appl Genet 132:1745–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel S, Löschenberger F, Hellinger J, Strasser V, Ametz C, Pachler B, Sparry E, Bürstmayr H (2019c) Improving and maintaining winter hardiness and frost tolerance in bread wheat by genomic selection. Front Plant Sci 10:1195

    PubMed  PubMed Central  Google Scholar 

  • Murphy KM, Campbell KG, Lyon SR, Jones SS (2007) Evidence of varietal adaptation to organic farming systems. Field Crops Res 102:172–177

    Google Scholar 

  • Pérez P, De Los CG (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483–495

    PubMed  PubMed Central  Google Scholar 

  • Perez-Lara E, Semagn K, Chen H, Iqbal M, N’Diaye A, Kamran A, Navabi A, Pozniak C, Spaner D (2016) QTLs Associated with agronomic traits in the Cutler × AC Barrie spring wheat mapping population using single nucleotide polymorphic markers. PLoS ONE 11:e0160623

    PubMed  PubMed Central  Google Scholar 

  • Perez-Lara E, Semagn K, Tran AN, Ciechanowska I, Chen H, Iqbal M, N’Diaye A, Pozniak C, Strelkov SE, Hucl PJ, Graf RJ, Randhawa H, Spaner D (2017) Population structure and genomewide association analysis of resistance to disease and insensitivity to Ptr toxins in Canadian spring wheat using 90K SNP array. Crop Sci 57:1522–1539

    CAS  Google Scholar 

  • Platten JD, Cobb JN, Zantua RE (2019) Criteria for evaluating molecular markers: comprehensive quality metrics to improve marker-assisted selection. PLoS ONE 14:e0210529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu SY, Manes Y, Dreisigacker S, Crossa J, Sanchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    CAS  Google Scholar 

  • Raftery AE, Lewis SM (1992) One long run with diagnostics: Implementation strategies for markov chain monte carlo. Stat Sci 7:493–497

    Google Scholar 

  • Reid TA, Yang RC, Salmon DF, Navabi A, Spaner D (2011) Realized gains from selection for spring wheat grain yield are different in conventional and organically managed systems. Euphytica 177:253–266

    Google Scholar 

  • Roorkiwal M, Jarquin D, Singh MK, Gaur PM, Bharadwaj C, Rathore A, Howard R, Srinivasan S, Jain A, Garg V, Kale S, Chitikineni A, Tripathi S, Jones E, Robbins KR, Crossa J, Varshney RK (2018) Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Sci Rep 8:11701

    PubMed  PubMed Central  Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173

    Google Scholar 

  • Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL, Sorrells ME (2015) Efficient use of historical data for genomic selection: a case study of stem rust resistance in wheat. Plant Genome 8:1–10

    Google Scholar 

  • Schaid DJ, Chen W, Larson NB (2018) From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 19:491–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, Iqbal M, Chen H, Perez-Lara E, Bemister DH, Xiang R, Zou J, Asif M, Kamran A, N’Diaye A, Randhawa H, Beres BL, Pozniak C, Spaner D (2021a) Physical mapping of QTL associated with agronomic and end-use quality traits in spring wheat under conventional and organic management systems. Theor Appl Genet. https://doi.org/10.1007/s00122-021-03923-x

    Article  PubMed  Google Scholar 

  • Semagn K, Iqbal M, Chen H, Perez-Lara E, Bemister DH, Xiang R, Zou J, Asif M, Kamran A, N’Diaye A, Randhawa H, Pozniak C, Spaner D (2021b) Physical mapping of QTL in four spring wheat populations under conventional and organic management systems. I Earl Plants 10:853

    CAS  Google Scholar 

  • Song J, Carver BF, Powers C, Yan L, Klápště J, El-Kassaby YA, Chen C (2017) Practical application of genomic selection in a doubled-haploid winter wheat breeding program. Mol Breed 37:117

  • Sukumaran S, Crossa J, Jarquin D, Lopes M, Reynolds MP (2017) Genomic prediction with pedigree and genotype × environment interaction in spring wheat grown in South and West Asia, North Africa, and Mexico. Genes Genom Genet 7:481–495

    Google Scholar 

  • Sukumaran S, Jarquin D, Crossa J, Reynolds M (2018) Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in Durum wheat. Plant Genome 11:170112

    Google Scholar 

  • Thavamanikumar S, Dolferus R, Thumma BR (2015) Comparison of genomic selection models to predict flowering time and spike grain number in two hexaploid wheat doubled haploid populations. Genes Genom Genet 5:1991–1998

    Google Scholar 

  • Thorwarth P, Piepho HP, Zhao Y, Ebmeyer E, Schacht J, Schachschneider R, Kazman E, Reif JC, Würschum T, Longin CFH (2018) Higher grain yield and higher grain protein deviation underline the potential of hybrid wheat for a sustainable agriculture. Plant Breed 137:326–337

    CAS  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    CAS  PubMed  Google Scholar 

  • Veenstra LD, Poland J, Jannink JL, Sorrells ME (2020) Recurrent genomic selection for wheat grain fructans. Crop Sci 60:1499–1512

    CAS  Google Scholar 

  • Vivek BS, Krishna GK, Vengadessan V, Babu R, Zaidi PH, Kha LQ, Mandal SS, Grudloyma P, Takalkar S, Krothapalli K, Singh IS, Ocampo ETM, Xingming F, Burgueño J, Azrai M, Singh RP, Crossa J (2007) Crossa J (2017) Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome 10(plantgenome2016):0070

    Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe MS, Baresel JP, Desclaux D, Goldringer I, Hoad S, Kovacs G, Löschenberger F, Miedaner T, Østergård H, Lammerts van Bueren ET (2008) Developments in breeding cereals for organic agriculture. Euphytica 163:323

    Google Scholar 

  • Xiang R, Semagn K, Iqbal M, Chen H, Yang R-C, Spaner D (2021) Phenotypic performance and associated QTL of ‘Peace’ × ‘CDC Stanley’ mapping population under conventional and organic management systems. Crop Sci 61:3469–3483

    CAS  Google Scholar 

  • Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D, Zhang A, Li B, Xu H, An D (2014) Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet 127:59–72

    CAS  PubMed  Google Scholar 

  • Zhang X, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin G, Prasanna BM, Vargas M, San Vicente F, Crossa J (2017) Rapid cycling genomic selection in a multiparental tropical maize population. Genes Genom Genet 7:2315–2326

    Google Scholar 

  • Zhang J, Wang Y, Zhao Y, Zhang Y, Zhang J, Ma H, Han Y (2020) Transcriptome analysis reveals nitrogen deficiency induced alterations in leaf and root of three cultivars of potato (Solanum tuberosum L.). PLoS ONE 15:e0240662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Mrode R, Zhang S, Zhang Q, Li B, Liu J-F (2018) Factors affecting GEBV accuracy with single-step Bayesian models. Heredity 120:100–109

    PubMed  Google Scholar 

  • Zou J, Semagn K, Iqbal M, N’Diaye A, Chen H, Asif M, Navabi A, Perez-Lara E, Pozniak C, Yang RC, Randhawa H, Spaner D (2017a) Mapping QTLs controlling agronomic traits in the Attila x CDC Go spring wheat population under organic management using 90K SNP array. Crop Sci 57:365–377

    CAS  Google Scholar 

  • Zou J, Semagn K, Iqbal M, N’Diaye A, Chen H, Asif M, Navabi A, Perez-Lara E, Pozniak C, Yang RC, Randhawa H, Spaner D (2017b) QTLs associated with agronomic traits in the Attila × CDC Go spring wheat population evaluated under conventional management. PLoS ONE 12:e0171528

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would also like to express appreciation to Klaus Strenzke, Joseph Moss, Izabela Ciechnowska, Fabiana Dias, Katherine Chabot, Tom Keady, and Russel Puk for their technical support with phenotypic data collection in both the conventional and organic managements.

Funding

This study was supported by grants to the University of Alberta wheat breeding program from the Alberta Crop Industry Development Fund (ACIDF), Alberta Wheat Commission (AWC), Saskatchewan Wheat Development Commission (Sask Wheat), Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery and Collaborative Grant, Agriculture and Agri-Food Canada (AAFC), Western Grains Research Foundation Endowment Fund (WGRF), and Core Program Check-off funds to DS.

Author information

Authors and Affiliations

Authors

Contributions

KS conceptualized the work, curated and analyzed the data, and wrote the paper. MI supervised and managed the field data collection, contributed to data curation and analyses, and edited the paper. JC, DR, and RH were involved in data analyses and edited the paper. HC, DHB, HR, BLB, AN, and CP were involved in data generation and edited the paper. DS conceptualized the project, acquired funding, supervised the project, and edited the paper.

Corresponding author

Correspondence to Dean Spaner.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Availability of data and material

All relevant files are included in this article and its supplementary files.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Xianchun Xia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semagn, K., Iqbal, M., Crossa, J. et al. Genome-based prediction of agronomic traits in spring wheat under conventional and organic management systems. Theor Appl Genet 135, 537–552 (2022). https://doi.org/10.1007/s00122-021-03982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03982-0

Navigation