Aiemnaka P, Wongkaew A, Chanthaworn J, Nagashima SK, Boonma S, Authapun J et al (2012) Molecular characterization of a spontaneous waxy starch mutation in cassava. Crop Sci 52:2121–2130. https://doi.org/10.2135/cropsci2012.01.0058
CAS
Article
Google Scholar
de Albuquerque HYG, Carmo CDD, Brito AC, Oliveira EJD (2018) Genetic diversity of manihot esculenta crantz germplasm based on single-nucleotide polymorphism markers. Annals Appl Biol 173(3):271–284. https://doi.org/10.1111/aab.12460
Article
Google Scholar
Aldana AS, Quintero AF (2013) Physicochemical characterization of two cassava (Manihot esculenta Crantz) starches and flours. Rev Sci Agroaliment 1:19–25
Google Scholar
Andrade LRB, Sousa MBE, Oliveira EJ, Resende MDV, Azevedo CF (2019) Cassava yield traits predicted by genomic selection methods. PLoS One 14(11):e0224920. https://doi.org/10.1371/journal.pone.0224920
CAS
Article
PubMed
PubMed Central
Google Scholar
Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink J-L (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Gen 4:132–144. https://doi.org/10.3835/plantgenome2011.02.0007
Article
Google Scholar
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67(1):1–48. https://doi.org/10.18637/jss.v067.i01
Article
Google Scholar
Begum H, Spindel JE, Lalusin A, Borromeo T, Gregorio G, Hernandez J et al (2015) Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS ONE 10(3):e0119873. https://doi.org/10.1371/journal.pone.0119873
CAS
Article
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Tassel: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635
CAS
PubMed
Google Scholar
BredesonJ V, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E et al (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34:562–570. https://doi.org/10.1038/nbt.3535
CAS
Article
Google Scholar
Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324
Article
Google Scholar
Ceballos H, Iglesias CA, Perez JC, Dixon AG (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516. https://doi.org/10.1007/s11103-004-5010-5
CAS
Article
PubMed
Google Scholar
Cach NT, Perez JC, Lenis JI, Calle F, Morante N et al (2005) Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J Hered 96:586–592
CAS
PubMed
Google Scholar
Calle F, Perez JC, Gaitán W, Morante N, Ceballos H, Llano G et al (2005) Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 144:177–186
Google Scholar
Ceballos H, Pérez JC, Barandica OJ, Lenis JI, Morante N, Calle F, Pino L, Hershey CH (2016) Cassava breeding I: the value of breeding value. Front Plant Sci 7:1227
PubMed
PubMed Central
Google Scholar
Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128:1647–1667
PubMed
PubMed Central
Google Scholar
Ceballos H, Rojanaridpiched C, Phumichai C et al (2020) Excellence in cassava breeding: perspectives for the future. Crop Breed Gene Genom 2:e200008
Google Scholar
Chaengsee P, Kongsil P, Siriwong N, Kittipadakul P, Piyachomkwan K, Petchpoung K (2020) Potential yield and cyanogenic glucoside content of cassava root and pasting properties of starch and flour from cassava Hanatee var and breeding lines grown under rain-fed condition. Agri Natural Resour 54(3):237–244
Google Scholar
Combs E, Bernardo R (2013) Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. Plant Genome 6:1–7. https://doi.org/10.3835/plantgenome2012.11.0030
CAS
Article
Google Scholar
Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueño J, Windhausen VS, Buckler E, Jannink J-L, Lopez Cruz MA, Babu R (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 Genes|Genomes|Genetics 3(11):1903–1926. https://doi.org/10.1534/g3.113.008227
CAS
Article
PubMed
PubMed Central
Google Scholar
Crossa J et al (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60
CAS
PubMed
Google Scholar
Crossa J et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975
CAS
PubMed
Google Scholar
Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031
CAS
PubMed
PubMed Central
Google Scholar
de losCampos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385. https://doi.org/10.1534/genetics.109.101501
CAS
Article
Google Scholar
de losCampos G, Gianola D, Rosa GJM, Weigel KA, Cross J (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92:295–308. https://doi.org/10.1017/S0016672310000285
CAS
Article
Google Scholar
de losCampos, G., Pérez, P. 2013. BGLR: Bayesian generalized linear regression. R package version 1.0.4. https://cran.r-project.org/web/packages/BGLR
Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601
CAS
PubMed
Google Scholar
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. PloS one 6(5):e19379
CAS
PubMed
PubMed Central
Google Scholar
Ehret A, Hochstuhl D, Gianola D, Thaller G (2015) Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Genet Sel Evol 47:22
PubMed
PubMed Central
Google Scholar
Elango D, Xue W, Chopra S (2020) Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor. Physio Mol Biol Plants 26(8):1727–1737. https://doi.org/10.1007/s12298-020-00848-5
Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. The Plant Genome 4:250–255
Google Scholar
Endelman JB, Jannink JL (2012) Shrinkage estimation of the realized relationship matrix. G3 Genes|Genomes|Genetics 2:1405–1413
Evans ID, Lips A (1992) Viscoelasticity of gelatinized starch dispersions. J Texture Stud 23:69–86. https://doi.org/10.1111/j.1745-4603.1992.tb00512.x
Ezenwaka L, Del Carpio DP, Jannink J-L, Rabbi I, Danquah E, Asante I, Danquah A, Blay E, Egesi C (2018) Genome-wide association study of resistance to cassava green mite pest and related traits in cassava. Crop Sci 58:1907–1918
CAS
Google Scholar
FAO. 2018 Food Outlook - biannual report on global food markets – November 2018. Rome. 104 pp.
Flint-Garcia SA, Thornsberry JM, Buckler ESIV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374. https://doi.org/10.1146/annurev.arplant.54.031902.134907
CAS
Article
PubMed
Google Scholar
Gelandi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17
Google Scholar
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) Tassel-gbs: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9(2):e90346
PubMed
PubMed Central
Google Scholar
González-Camacho JM, Ornella L, Pérez-Rodríguez P, Gianola D, Dreisigacker S, Crossa J (2018) Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. Plant Genome. https://doi.org/10.3835/plantgenome2017.11.0104
Article
PubMed
Google Scholar
Gouy M, Rousselle Y, Bastianelli D et al (2013) Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet 126:2575–2586. https://doi.org/10.1007/s00122-013-2156-z
CAS
Article
PubMed
Google Scholar
Gracen VE, Kogsil P, Napasintuwong O, Duangjit J, Phumichai C. The story of Kasetsart 50. The most important cassava variety in the world. Bangkok-Kamphaeng Saen (Thailand): Center for Agricultural Biotechnology, Kasetsart University; 2018.
Guo G, Zhao F, Wang Y, Zhang Y, Du L et al (2014) Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet 15:30. https://doi.org/10.1186/1471-2156-15-30
Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME (2010) Genetic Architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in holstein cattle as contrasting model traits. PLoS Genet 6(9):e1001139. https://doi.org/10.1371/journal.pgen.1001139
CAS
Article
PubMed
PubMed Central
Google Scholar
Habier D, Fernando R, Kizilkaya K, Garrick D (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186
PubMed
PubMed Central
Google Scholar
Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12
CAS
Google Scholar
Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690
Google Scholar
Heslot N, Yang H, Sorrells M, Jannink J (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160. https://doi.org/10.2135/cropsci2011.09.0297
Article
Google Scholar
Hickey JM, Chiurugwi T, Mackay I, Powell W (2017) Implementing genomic selection in CBPWP genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet 49:1297–1303
CAS
PubMed
Google Scholar
Howard R, Carriquiry AL, Beavis WD (2014) Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3 Genes|Genomes|Genetics 4:1027–1046
PubMed
PubMed Central
Google Scholar
Ikeogu UN, Akdemir D, Wolfe MD, Okeke UG, Amaefula C, Jannink J-L, Egesi CN (2019) Genetic correlation, genome-wide association and genomic prediction of portable NIRS predicted carotenoids in cassava roots. Front Plant Sci 10:1570–1570
PubMed
PubMed Central
Google Scholar
Isidro J, Jannink JL, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128(1):145–158. https://doi.org/10.1007/s00122-014-2418-4
Article
PubMed
Google Scholar
Jaramillo G, Morante N, Pérez JC, Calle F, Ceballos H et al (2005) Diallel analysis in cassava adapted to the midaltitude valleys environment. Crop Sci 45:1058–1063
Google Scholar
Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177
CAS
PubMed
Google Scholar
Juliana P, Singh RP, Singh PK, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME (2018) Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor Appl Genet 131(7):1405–1422. https://doi.org/10.1007/s00122-018-3086-6
Article
PubMed
PubMed Central
Google Scholar
Kaler AS, Purcell LC (2019) Estimation of a significance threshold for genome-wide association studies. BMC Genomics 20:618. https://doi.org/10.1186/s12864-019-5992-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Karlström A, Calle F, Salazar S, Morante N, Dufour D, Ceballos H (2016) Biological implications in cassava for the production of amylose-free starch: impact on root yield and related traits. Front Plant Sci 7:604. https://doi.org/10.3389/fpls.2016.00604
Kawano K, Fukuda WMG, Cenpukdee U (1987) Genetic and environmental effects on dry matter content of cassava root. Crop Sci 27(1):69–74
Google Scholar
Kawano K (2003) Thirty years of cassava breeding for productivity – biological and social factors for success. Crop Sci 43:1325–1335. https://doi.org/10.2135/cropsci2003.1325
Article
Google Scholar
Kayondo SI, Pino Del Carpio D, Lozano R, Ozimati A, Wolfe M et al (2018) Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Sci Rep 8:1549. https://doi.org/10.1038/s41598-018-19696-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Kulembeka HP, Ferguson M, Herselman L, Kanju E, Mkamilo G et al (2012) Diallel analysis of field resistance to brown streak disease in cassava (Manihot esculenta Crantz) landraces from Tanzania. Euphytica 187:277–288
Google Scholar
Kuon J-E, Qi W, Schläpfer P, Hirsch-Hoffmann M, Rogalla P, von Bieberstein A, Patrignani LP et al (2019) Haplotype-resolved genomes of geminivirus-resistant and geminivirus-susceptible african cassava cultivars. BMC Biol 17(1):75
PubMed
PubMed Central
Google Scholar
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760
CAS
PubMed
PubMed Central
Google Scholar
Liaw A. 2013 Breiman and Cutler’s random forests for classification and regression. Available 403 at: http://cran.r-project.org/web/packages/randomForest/index.html.
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ et al (2012) GAPIT, genome association and prediction integrated tool. Bioinformatics 28:2397–2399. https://doi.org/10.1093/bioinformatics/bts444
CAS
Article
PubMed
Google Scholar
Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12(2):e1005767. https://doi.org/10.1371/journal.pgen.1005767
CAS
Article
PubMed
PubMed Central
Google Scholar
Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621
Google Scholar
Lorenz AJ (2013) Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3 Genes|Genomes|Genetics 3:481–91
PubMed
PubMed Central
Google Scholar
Maenhout S, De Baets B, Haesaert G, Van Bockstaele E (2007) Support vector machine regression for the prediction of maize hybrid performance. Theor Appl Genet 115:1003–1013
CAS
PubMed
Google Scholar
McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186(2):318–332
PubMed
Google Scholar
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829
CAS
PubMed
PubMed Central
Google Scholar
Momen M, Mehrgardi AA, Sheikhi A, Kranis A, Tusell L et al (2018) Predictive ability of genome-assisted statistical models under various forms of gene action. Sci Rep 8:12309. https://doi.org/10.1038/s41598-018-30089-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Morota G, Gianola D (2014) Kernel-based whole-genome prediction of complex traits: a review. Front Gene 5:363
Google Scholar
Newport Scientific operation manual of the series 4 rapid visco analyzer. Australia. 1995. p 93
Nwokocha LM, Aviara NA, Senan C, Williams PA (2009) A comparative study of some properties of cassava and cocoyam starches. Carbohydr Polym 76:362–367. https://doi.org/10.1016/j.carbpol.2008.10.034
CAS
Article
Google Scholar
Ogbonna AC, Braatz de Andrade LR, Mueller LA et al (2021) Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: insights into diversification and domestication. Theor Appl Genet. https://doi.org/10.1007/s00122-021-03775-5
Article
PubMed
PubMed Central
Google Scholar
Okeke UG, Akdemir D, Rabbi I et al (2017) Accuracies of univariate and multivariate genomic prediction models in African cassava. Genet Sel Evol 49:88. https://doi.org/10.1186/s12711-017-0361-y
Article
PubMed
PubMed Central
Google Scholar
Ozimati AR, Kawuki W, Esuma IS, Kayondo M, Wolfe et al (2018) Training population optimization for prediction of cassava brown streak disease resistance in west african clones. G3 Genes|Genomes|Genetics 8:3903–3913
Ozimati A, Kawuki R, Esuma W, Kayondo SI, Pariyo A, Wolfe M, Jannink JL (2019) Genetic variation and trait correlations in an East African cassava breeding population for genomic selection. Crop Sci 59(2):460–473
PubMed
PubMed Central
Google Scholar
Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103:681–686
CAS
Google Scholar
Pérez JC, Ceballos H, Calle F, Morante N, Gaitán W et al (2005) Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145:77–85
Google Scholar
Pérez P, de Loscampos G (2014) Genome-wide regression and prediction with the bglr statistical package. Genetics 198:483–495. https://doi.org/10.1534/genetics.114.164442
Article
PubMed
PubMed Central
Google Scholar
Pérez-Rodríguez P, Gianola D, González-Camacho JM, Crossa J, Manès Y, Dreisigacker S (2012) Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3 Genes|Genomes|Genetics 2(12):1595–1605. https://doi.org/10.1534/g3.112.003665
CAS
Article
PubMed
PubMed Central
Google Scholar
Pérez L, Soto E, Farré G, Juanos J, Villorbina G, Bassie L, Medina V, Serrato AJ, Sahrawy M, Rojas JA, Romagosa I, Muñoz P, Zhu C, Christou P (2019) CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele specific and zygosity dependent feedback effects on endosperm starch biosynthesis. Plant cell Reports 38:417–433. https://doi.org/10.1007/s00299-019-02388-z
R Core Team (2017). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/.
Rabbi IY, Udoh LI, Wolfe M, Parkes EY, Gedil MA, Dixon A, Ramu P, Jannink J-L, Kulakow P (2017) Genome wide association mapping of correlated traits in cassava: dry matter and total carotenoid content. Plant Genome 10(3):944. https://doi.org/10.3835/plantgenome2016.09.0094
CAS
Article
Google Scholar
Rabbi IY, Kayondo SI, Bauchet G et al (2020) Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Mol Biol. https://doi.org/10.1007/s11103-020-01038-3
Article
PubMed
Google Scholar
Raemakers K, Schreuder M, Suurs L et al (2005) Improved cassava starch by antisense inhibition of granule-bound starch synthase I. Mol Breed 16:163–172. https://doi.org/10.1007/s11032-005-7874-8
Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, Bredeson JV, Bart RS, Verma J, Buckler ES, Fei Lu (2017) Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet. https://doi.org/10.1038/ng.3845
Article
PubMed
PubMed Central
Google Scholar
Riedelsheimer C et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220
CAS
PubMed
Google Scholar
Rojanaridpiched, C., V. Vichukit, S. Thongsri, O. Boonseng, A. Limsila and D. Suparhan (2010) Recent progress in cassava breeding and varietal adoption in Thailand. In: Howeler, R. (ed.) A new future for cassava in Asia: its use as food and fuel to benefit the poor. Proceedings of the 8th regional workshop, Vientiane, Lao PDR, pp. 202–210
Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink JL, Sorrells M (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61. https://doi.org/10.3835/plantgenome2012.02.0001
CAS
Article
Google Scholar
Salas-Tovar JA, Flores-Gallegos AC, Contreras-Esquivel JC et al (2017) Analytical methods for pectin methylesterase activity determination: a review. Food Anal Methods 10:3634–3646. https://doi.org/10.1007/s12161-017-0934-y
Article
Google Scholar
Sánchez T, Dufour D, Moreno IX, Ceballos H (2010) Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress. J Agric Food Chem 58:5093–5099
PubMed
Google Scholar
Sauvage C, Segura V, Bauchet G, Stevens R, Do PT, Nikoloski Z, Fernie AR, Causse M (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165(3):1120–1132. https://doi.org/10.1104/pp.114.241521
CAS
Article
PubMed
PubMed Central
Google Scholar
Schirmer M, Höchstötter A, Jekle M, Arendt E, Becker T (2013) Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocoll 32:52–63
CAS
Google Scholar
Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44(7):825–30
CAS
PubMed
PubMed Central
Google Scholar
Somo M, Kulembeka H, Mtunda K et al (2020) Genomic prediction and quantitative trait locus discovery in a cassava training population constructed from multiple breeding stages. Crop Sci 60:896–913. https://doi.org/10.1002/csc2.20003
CAS
Article
Google Scholar
Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite. Tropical Rice Breed Lines Plos Genet 11(2):e1004982. https://doi.org/10.1371/journal.pgen.1004982
CAS
Article
PubMed
Google Scholar
Stapleton G. (2012). Global starch market outlook and competing starch raw materials for by product segment and region. Pricing outlook and cassava growth potential. Cassava Starch World 2010. Centre for Management Technology (CMT), Phnom Penh
Su G, Christensen OF, Janss L, Lund MS (2014) Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. J Dairy Sci 97(10):6547–6559. https://doi.org/10.3168/jds.2014-8210
CAS
Article
PubMed
Google Scholar
Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958
CAS
PubMed
Google Scholar
Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, Acharya C, Glaubitz JC, Mitchell S, Elshire RJ, Buckler ES, Bradbury PJ (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome. https://doi.org/10.3835/plantgenome2014.05.0023
Article
Google Scholar
Thanyasiriwat T, Sraphet S, Whankaew S, Boonseng O, Bao J, Lightfoot DA, Tangphatsornruang S, Triwitayakorn K (2014) Quantitative trait loci and candidate genes associated with starch pasting viscosity characteristics in cassava (Manihot esculenta Crantz). Plant Biol (stuttg) 16(1):197–207. https://doi.org/10.1111/plb.12022 (Epub 2013 Apr 24 PMID: 23614826)
CAS
Article
Google Scholar
Toae R, Sriroth K, Rojanaridpiched C, Vichukit V, Chotineeranat S, Wansuksri R, Chatakanonda P, Piyachomkwan K (2019) Outstanding characteristics of Thai non-gm bred waxy cassava starches compared with normal cassava starch, waxy cereal starches and stabilized cassava starches. Plants 8(11):447. https://doi.org/10.3390/plants8110447
CAS
Article
PubMed Central
Google Scholar
Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Methodol 58:267–288
Google Scholar
Tumuhimbise R, Melis R, Shanahan P (2014) Diallel analysis of early storage root yield and disease resistance traits in cassava (Manihot esculenta Crantz). F Crop Res 167:86–93
Google Scholar
VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423
CAS
PubMed
Google Scholar
Wang X, Yang Z, Xu C (2015) A comparison of genomic selection methods for breeding value prediction. Sci Bull 60:925–935
Google Scholar
Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z (2017) Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity 118:302–310
CAS
PubMed
Google Scholar
Wickham H (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. ISBN 978–3–319–24277–4, https://ggplot2.tidyverse.org.
Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, Kulakow P et al (2016) Genome-wide association and prediction reveals the genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome 9(2):1–13. https://doi.org/10.3835/plantgenome2015.11.0118
CAS
Article
Google Scholar
Wolfe MD, Kulakow P, Rabbi IY, Jannink J-L (2016b) Marker-based estimates reveal significant nonadditive effects in clonally propagated cassava (Manihot esculenta): implications for the prediction of total genetic value and the selection of varieties. G3 Genes|Genomes|Genetics 6:3497. https://doi.org/10.1534/g3.116.033332
Article
PubMed
PubMed Central
Google Scholar
Wolfe MD, Del Carpio DP, Alabi O, Ezenwaka LC, Ikeogu UM, Kayondo IS et al (2017) Prospects for genomic selection in cassava breeding. Plant Genome 10(3):1–19
Google Scholar
Wolfe MD, Bauchet GJ, Chan AW, Lozano R, Ramu P et al (2019) Historical introgressions from a wild relative of modern cassava improved important traits and may be under balancing selection. Genetics 213:1237–1253
PubMed
PubMed Central
Google Scholar
Xu S (2017) Predicted residual error sum of squares of mixed models: an application for genomic prediction. G3 Genes|Genomes|Genetics 7:895–909
PubMed Central
Google Scholar
Xu S, Zhu D, Zhang Q (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci USA 111:12456–12461
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Wang X, Ding X, Zheng X, Yang Z, Xu C, Hu Z (2018) Genomic selection of agronomic traits in hybrid rice using an NCII population. Rice 10, 11(1):32. https://doi.org/10.1186/s12284-018-0223-4. PMID: 29748895; PMCID:PMC5945574
Yabe S, Hara T, Ueno M, Enoki H, Kimura T, Nishimura S, Yasui Y, Ohsawa R, Iwata H (2018) Potential of genomic selection in mass selection breeding of an allogamous crop: an empirical study to increase yield of common buckwheat. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00276
Article
PubMed
PubMed Central
Google Scholar
Yasui T, Ashida K (2011) Waxy endosperm accompanies increased fat and saccharide contents in bread wheat (Triticum aestivum L.) grain. Cereal Sci 53:104–111. https://doi.org/10.1016/j.jcs.2010.10.004
Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F et al (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10(9):e1004573. https://doi.org/10.1371/journal.pgen.1004573
CAS
Article
PubMed
PubMed Central
Google Scholar
Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X (2021) rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study, genomics. Proteom Bioinform. https://doi.org/10.1016/j.gpb.2020.10.007
Article
Google Scholar
Yonis BO, Pino del Carpio D, Wolfe M et al (2020) Improving root characterisation for genomic prediction in cassava. Sci Rep 10:8003. https://doi.org/10.1038/s41598-020-64963-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Yun MS, Kawagoe Y (2009) Amyloplast division progresses simultaneously at multiple sites in the endosperm of rice. Plant Cell Physiol 50(9):1617–1626. https://doi.org/10.1093/pcp/pcp104
Zacarias AM, Labuschagne MT (2010) Diallel analysis of cassava brown streak disease, yield and yield related characteristics in Mozambique. Euphytica 176:309–320
Google Scholar
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM (2010) Buckler ES. Nat Genet 42(4):355–360
CAS
PubMed
PubMed Central
Google Scholar
Zhang N et al (2015) Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiol 168:575–583
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Chen X, Lu C, Ye J, Zou M, Lu K, Feng S, Pei J, Liu C, Zhou X, Ma P, Li Z, Liu C, Liao Q, Xia Z, Wang W (2018) Genome-wide association studies of 11 agronomic traits in cassava (Manihot esculenta Crantz). Front Plant Sci 9:503. https://doi.org/10.3389/fpls.2018.00503
Article
PubMed
PubMed Central
Google Scholar