Skip to main content

Advertisement

Log in

Major effect loci for plant size before onset of nitrogen fixation allow accurate prediction of yield in white clover

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Accurate genomic prediction of yield within and across generations was achieved by estimating the genetic merit of individual white clover genotypes based on extensive genetic replication using cloned material.

Abstract

White clover is an agriculturally important forage legume grown throughout temperate regions as a mixed clover–grass crop. It is typically cultivated with low nitrogen input, making yield dependent on nitrogen fixation by rhizobia in root nodules. Here, we investigate the effects of clover and rhizobium genetic variation by monitoring plant growth and quantifying dry matter yield of 704 combinations of 145 clover genotypes and 170 rhizobium inocula. We find no significant effect of rhizobium variation. In contrast, we can predict yield based on a few white clover markers strongly associated with plant size prior to nitrogen fixation, and the prediction accuracy for polycross offspring yield is remarkably high. Several of the markers are located near a homolog of Arabidopsis thaliana GIGANTUS 1, which regulates growth rate and biomass accumulation. Our work provides fundamental insight into the genetics of white clover yield and identifies specific candidate genes as breeding targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

RNA-seq reads were deposited in the Sequence Read Archive with bioproject ID PRJNA661141.

Code availability

The workflow for mapping and variant calling can be found at: https://github.com/MarniTausen/WhiteCloverRNAseq. All scripts used for statistical analyses and visualisation of data are available at: https://github.com/cks2903/White_Clover_GenomicPrediction_2020.

References

  • Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015) Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics 16:1020

    Article  Google Scholar 

  • Annicchiarico P, Piano E, Rhodes I (1999) Heritability of, and genetic correlations among, forage and seed yield traits in Ladino white clover. In Plant Breed 118(4):341–346

    Article  Google Scholar 

  • Archer M (1973) The species preferences of grazing horses. In Grass Forage Sci 28(3):123–128. https://doi.org/10.1111/j.1365-2494.1973.tb00732.x

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. In Crop Sci 48(5):1649–1664. https://doi.org/10.2135/cropsci2008.03.0131

    Article  Google Scholar 

  • Bradshaw JE (2016) Plant breeding: past, present and future. Euphytica. https://doi.org/10.1007/978-3-319-23285-0

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Browning BL, Zhou Y, Browning SR (2018) A one-penny imputed genome from next-generation reference panels. Am J Hum Genet 103(3):338–348

    Article  CAS  Google Scholar 

  • Caradus JR, Woodfield DR, Stewart AV (1995) Overview and vision for white clover. NZGA Res Practice Series 6:1–6

    Article  Google Scholar 

  • Cavassim MIA, Moeskjær S, Moslemi C, Fields B, Bachmann A, Vilhjálmsson BJ, Schierup MH, Young WJP, Andersen SU (2020) Symbiosis genes show a unique pattern of introgression and selection within a species complex. Microb Genomics. https://doi.org/10.1099/mgen.0.000351

    Article  Google Scholar 

  • Cericola F, Jahoor A, Orabi J, Andersen JR, Janss LL, Jensen J (2017) Optimizing training population size and genotyping strategy for genomic prediction using association study results and pedigree information. A case of study in advanced wheat breeding lines. PloS One 12(1):e0169606

    Article  Google Scholar 

  • Crush JR (1995) Rhizobiumstrain × host genotype interactions for white clover(Trifolium repens L.) genotypes with different aluminium tolerances. In NZ J Agric Res 38(2):163–167. https://doi.org/10.1080/00288233.1995.9513115

    Article  Google Scholar 

  • Danecek P, McCarthy SA (2017) BCFtools/csq: haplotype-aware variant consequences. Bioinformatics 33(13):2037–2039

    Article  CAS  Google Scholar 

  • de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D (2013) Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genetics 9(7):e1003608

    Article  CAS  Google Scholar 

  • De Mendiburu F, Simon R (2015) Agricolae-Ten years of an open source statistical tool for experiments in breeding, agriculture and biology (No. e1748). Peer J PrePrints

  • Dobin A, Gingeras TR (2016) Optimizing RNA-Seq mapping with STAR. Methods Mol Biol 1415:245–262

    Article  CAS  Google Scholar 

  • Faville MJ, Griffiths AG, Jahufer MZZ, Barrett BA (2012) Progress towards marker-assisted selection in forages. In: Proceedings of the New Zealand Grassland Association. pp. 189–194. https://doi.org/10.33584/jnzg.2012.74.2860

  • Gachomo EW, Jimenez-Lopez JC, Baptiste LJ, Kotchoni SO (2014) GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana. BMC Plant Biol 14:37

    Article  Google Scholar 

  • Gibson PB, Beinhart G, Halpin JE, Hollowell EA (1963) Selection and evaluation of white clover clones. I. Basis for selection and a comparison of two methods of propagation for advanced evaluations 1. In Crop Sci 3(1):83–86. https://doi.org/10.2135/cropsci1963.0011183x000300010025x

    Article  Google Scholar 

  • Griffiths AG, Moraga R, Tausen M, Gupta V, Bilton TP, Campbell MA, Ashby R, Nagy I, Khan A, Larking A, Anderson C, Franzmayr B, Hancock K, Scott A, Ellison NW, Cox MP, Asp T, Mailund T, Schierup MH, Andersen SU (2019) Breaking free: the genomics of allopolyploidy-facilitated niche expansion in white clover. Plant Cell 31(7):1466–1487

    Article  CAS  Google Scholar 

  • Grüneberg W, Mwanga R, Andrade M,Espinoza J (2009) Selection methods. Part 5: breeding clonally propagated crops. Plant Breed Farmer Particip, pp 275–322

  • Hayes BJ, Cogan NOI, Pembleton LW, Goddard ME, Wang J, Spangenberg GC, Forster JW (2013) Prospects for genomic selection in forage plant species. In Plant Breed 132(2):133–143. https://doi.org/10.1111/pbr.12037

    Article  Google Scholar 

  • Hoyos-Villegas V, O’Connor JR, Heslop AD, Hilditch A, Jahufer MZZ, Barrett BA (2019) Rate of genetic gain for persistence to grazing and dry matter yield in white clover across 90 years of cultivar development. In Crop Sci 59(2):537–552. https://doi.org/10.2135/cropsci2018.07.0471

    Article  Google Scholar 

  • Inostroza L, Bhakta M, Acuña H, Vásquez C, Ibáñez J, Tapia G, Mei W, Kirst M, Resende M, Munoz P (2018) Understanding the complexity of cold tolerance in white clover using temperature gradient locations and a GWAS approach. In The Plant Genome 11(3):170096. https://doi.org/10.3835/plantgenome2017.11.0096

    Article  CAS  Google Scholar 

  • Irisarri P, Cardozo G, Tartaglia C, Reyno R, Gutiérrez P, Lattanzi FA, Rebuffo M, Monza J (2019) Selection of competitive and efficient rhizobia strains for white clover. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00768

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahufer MZZ, Cooper M, Brien LA (1994) Genotypic variation for stolon and other morphological attributes of white clover (Trifolium repens L.). Populations and their influence on herbage yield in the summer rainfall region of New South Wales. In Aust J Agric Res 45(3):703. https://doi.org/10.1071/ar9940703

    Article  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723

    Article  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354

    Article  Google Scholar 

  • Kaur P, Appels R, Bayer PE, Keeble-Gagnere G, Wang J, Hirakawa H, Shirasawa K, Vercoe P, Stefanova K, Durmic Z, Nichols P, Revell C, Isobe SN, Edwards D, Erskine W (2017) Climate clever clovers: new paradigm to reduce the environmental footprint of ruminants by breeding low methanogenic forages utilizing haplotype variation. Front Plant Sci 8:1463

    Article  Google Scholar 

  • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28(1):1–26

  • Lowther WL, Kerr GA (2011) White clover seed inoculation and coating in New Zealand. In: Proceedings of the New Zealand Grassland Association pp. 93–102. https://doi.org/10.33584/jnzg.2011.73.2841

  • Matsubara K, Yamamoto E, Kobayashi N, Ishii T, Tanaka J, Tsunematsu H, Yoshinaga S, Matsumura O, Yonemaru J-I, Mizobuchi R, Yamamoto T, Kato H, Yano M (2016) Improvement of rice biomass yield through QTL-based selection. PloS One 11(3):e0151830

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    Article  CAS  Google Scholar 

  • Miedaner T, Haffke S, Siekmann D, Joachim Fromme F, Roux SR, Hackauf B (2018) Dynamic quantitative trait loci (QTL) for plant height predict biomass yield in hybrid rye (Secale cereale L.). In Biomass Bioenergy. 115:10–18. https://doi.org/10.1016/j.biombioe.2018.04.001

    Article  CAS  Google Scholar 

  • Moeskjær S, Tausen M, Andersen SU, Young, J. P. W. (nd). Amplicons and isolates: Rhizobium diversity in fields under conventional and organic management. https://doi.org/10.1101/2020.09.22.307934

  • Mytton LR (1975) Plant genotype × rhizobium strain interactions in white clover. In Ann Appl Biol 80(1):103–107. https://doi.org/10.1111/j.1744-7348.1975.tb01604.x

    Article  CAS  Google Scholar 

  • Pérez P, de los Campos, G. (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198(2):483–495

    Article  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. https://www.R-project.org

  • Ruz-Jerez BE, Roger Ball P, White RE, Gregg PEH (1991) Comparison of a herbal ley with a ryegrass-white clover pasture and pure ryegrass sward receiving fertiliser nitrogen. In: Proceedings of the New Zealand Grassland Association (pp. 225–230). https://doi.org/10.33584/jnzg.1991.53.1982

  • Sakiroglu M, Brummer EC (2017) Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. TAG Theor Appl Genet Theoretische Angewandte Genetik 130(2):261–268

    Article  CAS  Google Scholar 

  • Svenning MM, Junttila O, Solheim B (1991) Symbiotic growth of indigenous white clover (Trifolium repens) with local Rhizobium leguminosarum biovar trifolii. In Physiol Plant 83(3):381–389. https://doi.org/10.1034/j.1399-3054.1991.830308.x

    Article  CAS  Google Scholar 

  • Svenning MM, Gudmundsson J, Fagerli I-L, Leinonen P (2001) Competition for nodule occupancy between introduced strains of rhizobium leguminosarum biovar trifolii and its influence on plant production. Ann Botany 88:781–787

    Article  Google Scholar 

  • Tang Y, Horikoshi M, Li W (2016) ggfortify: unified interface to visualize statistical results of popular R packages. R J 8(2):474

    Article  Google Scholar 

  • Tausen M, Clausen M, Moeskjær S, Shihavuddin A, Dahl AB, Janss L, Andersen SU (2020) Greenotyper: image-based plant phenotyping using distributed computing and deep learning. Front Plant Sci 11:1181

    Article  Google Scholar 

  • Thomson DJ, Beever DE, Haines MJ, Cammell SB, Evans RT, Dhanoa MS, Austin AR (1985) Yield and composition of milk from Friesian cows grazing either perennial ryegrass or white clover in early lactation. J Dairy Res 52(1):17–31. https://doi.org/10.1017/s0022029900023852

    Article  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423. https://doi.org/10.3168/jds.2007-0980

    Article  CAS  PubMed  Google Scholar 

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. TAG Theor Appl Genet Theoretische Und Angewandte Genetik 132(3):669–686

    Article  Google Scholar 

  • Wright MN, Ziegler A (2017) ranger: a fast implementation of random forests for high dimensional data in C and R. J Stat Softw. https://doi.org/10.18637/jss.v077.i01

    Article  Google Scholar 

  • Young NR, Mytton LR (1983) The response of white clover to different strains of Rhizobium trifolii in hill land reseeding. Grass Forage Sci 38(1):13–19. https://doi.org/10.1111/j.1365-2494.1983.tb01615.x

    Article  Google Scholar 

  • Zhao N, Yu X, Jie Q, Li H, Li H, Hu J, Zhai H, He S, Liu Q (2013) A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Mol Breed 32(4):807–820. https://doi.org/10.1007/s11032-013-9908-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Finn Pedersen, Nanna Walther, Mike Ladefoged Damholdt and Karina A. Kristensen for plant work and greenhouse tending, M. Izabel C. Alves, Trine F. Gadeberg, Caroline Benfeldt, Camous Moslemi and Leandro A. Escobar-Herrera for help in the greenhouse, and Marc Clausen for implementing the technical part of the imaging system.

Funding

This work was funded by grant no. 4105-00007A from Innovation Fund Denmark (S.U.A.).

Author information

Authors and Affiliations

Authors

Contributions

S.U.A. and S.M were involved in conceptualization; C.K.S., S.M., S.U.A. and L.J. helped in methodology; C.K.S., L.J., M.T, S.M. and R.W. contributed to software; C.K.S., M.T., S.M., S.U.A. and L.J. were involved in validation; C.K.S., S.M., M.T. and R.W helped in formal analysis; S.M., C.K.S, M.T. and N.R. contributed to investigation; L.J., S.U.A. and N.R. were involved in resources; C.K.S., S.M. and M.T. helped in data curation; C.K.S. and S.M. contributed to writing—original draft; S.U.A., C.K.S. and S.M. were involved in writing—review & editing; S.M. and C.K.S. helped in visualisation; S.U.A. and L.J. contributed to supervision; S.U.A. was involved in project administration and funding acquisition.

Corresponding authors

Correspondence to Cathrine Kiel Skovbjerg or Stig U. Andersen.

Ethics declarations

Conflict of interest

DLF has developed and marketed the cultivars Brianna, Klondike, Rabbani, Riesling, Silvester and Violin that were analysed in this study.

Additional information

Communicated by Matthew N Nelson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeskjær, S., Skovbjerg, C.K., Tausen, M. et al. Major effect loci for plant size before onset of nitrogen fixation allow accurate prediction of yield in white clover. Theor Appl Genet 135, 125–143 (2022). https://doi.org/10.1007/s00122-021-03955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03955-3

Navigation