Skip to main content
Log in

Fine mapping and identification of the candidate gene BFS for fruit shape in wax gourd (Benincasa hispida)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Non-synonymous mutations in the BFS gene, which encodes the IQD protein, are responsible for the shape of wax gourd fruits.

Abstract

Fruit shape is an important agronomic trait in wax gourds. Therefore, in this study, we employed bulked segregant analysis (BSA) to identify a candidate gene for fruit shape in wax gourds within F2 populations derived by crossing GX-71 (long cylindrical fruit, fruit shape index = 4.56) and MY-1 (round fruit, fruit shape index = 1.06) genotypes. According to BSA, the candidate gene is located in the 17.18 Mb region on chromosome 2. Meanwhile, kompetitive allele-specific PCR (KASP) markers were used to reduce it to a 19.6 Kb region. Only one gene was present within the corresponding region of the reference genome, namely Bch02G016830 (designated BFS). Subsequently, BFS was sequenced in six wax gourd varieties with different fruit shapes. Sequence analysis revealed two non-synonymous mutations in the round wax gourd and one non-synonymous mutation in the cylindrical wax gourd. Quantitative real‑time PCR (qRT-PCR) analysis further showed that the expression of BFS in round fruits was significantly higher than in long cylindrical fruits at the ovary formation stage. Therefore, BFS is a candidate gene for determination wax gourd shape. The predicted protein encoded by the BFS gene belongs to the IQ67-domain protein family, which have the structural characteristics of scaffold proteins and coordinate Ca2+ CaM signaling from the membrane to the nucleus. Ultimately, two derived cleaved amplified polymorphic sequence (dCAPS) markers were developed to facilitate marker-assisted selection for wax gourds breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bürstenbinder K, Savchenko T, Müller J, Adamson AW, Stamm G, Kwong R, Zipp BJ, Dinesh DC, Abel S (2013) Arabidopsis calmodulin-binding protein IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-related protein-1. J Biol Chem 288:1871–1882

    Article  PubMed  Google Scholar 

  • Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S (2017) The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus. Plant Physiol 173:1692–1708

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai R, Zhang C, Yang Z, Zhu K, Wang Y, Jiang H, Yan X, Cheng B (2016) Genome-wide analysis of the IQD gene family in maize. Mol Genet Genomics 291:543–558

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas L (2009) New findings in the mechanisms regulating polar growth in root hair cells. Plant Signal Behav 4:4–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Luan F, Wang X, Gao P, Zhu Z, Liu S, Baloch AM, Zhang Y (2016) Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Sci Hortic 202:25–31

    Article  CAS  Google Scholar 

  • Clevenger JP, Van Houten J, Blackwood M, Rodríguez GR, Jikumaru Y, Kamiya Y, Kusano M, Saito K, Visa S, van der Knaap E (2015) Network analyses reveal shifts in transcript profiles and metabolites that accompany the expression of SUN and an elongated tomato fruit. Plant Physiol 168:1164–1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Clevenger J (2012) Metabolic and genomic analysis of elongated fruit shape in tomato (Solanum lycopersicum). Dissertation, The Ohio State University

  • Colle M, Weng Y, Kang Y, Ophir R, Grumet R (2017) Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination. Planta 246:641–658

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong B, Ba Rrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y, Yu J (2013) Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS One 8:e70080

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Dou J, Zhao S, Lu X, He N, Zhang L, Ali A, Kuang H, Liu W (2018) Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet 131:947–958

    Article  CAS  PubMed  Google Scholar 

  • Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694

    Article  CAS  PubMed  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Yu JQ (2010) Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber. Plant Biol (stuttg) 12:98–107

    Article  CAS  Google Scholar 

  • Gao Z, Zhang H, Cao C, Han J, Li H, Ren Z (2020) QTL mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines. Horticultural Plant Journal 6:132–144

    Article  Google Scholar 

  • Gu M, Fan S, Liu G, Guo L, Ding X, Lu Y, Zhang Y, Ji G, Huang C (2013) Extract of wax gourd peel prevents high-fat diet-induced hyperlipidemia in C57BL/6 mice via the inhibition of the PPARγ pathway. Evid Based Complement Alternat Med 2013:1–11

    Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su Y, Yost HJ (2013) MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 23:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho LC (1996) The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. J Exp Bot 47:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Hwang J, Han D, Park M, Kim S, Choi D, Kim Y, Lee GP, Kim S, Park Y (2015) Major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS One 10:e145665

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre R, Kuzy J, Mcgregor C (2020) Markers for selection of three alleles of ClSUN25-26-27a (Cla011257) associated with fruit shape in watermelon. Mol Breeding 40:19

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yu J, Ye Q, Zhu Z, Guo Z (2003) Expression of CycD3 is transiently increased by pollination and N-(2-chloro-4-pyridyl)-N’-phenylurea in ovaries of Lagenaria leucantha. J Exp Bot 54:1245–1251

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. P Natl Acad Sci USA 99:13302–13306

    Article  CAS  Google Scholar 

  • Liu S, Gao P, Zhu Q, Luan F, Davis AR, Wang X (2016) Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data. Breed 66:244–259

    Article  CAS  Google Scholar 

  • Liu W, Jiang B, Peng Q, He X, Lin Y, Wang M, Liang Z, Xie D, Hu K (2018) Genetic analysis and QTL mapping of fruit-related traits in wax gourd (Benincasa hispida). Euphytica 214:136

    Article  Google Scholar 

  • Liu X, Pan Y, Liu C, Ding Y, Meng H (2020) Cucumber fruit size and shape variations explored from the aspects of morphology, histology, and endogenous hormones. Plants 9:772

    Article  CAS  PubMed Central  Google Scholar 

  • Maeda S, Gunji S, Hanai K, Hirano T, Kazama Y, Ohbayashi I, Abe T, Sawa S, Tsukaya H, Ferjani A (2014) The conflict between cell proliferation and expansion primarily affects stem organogenesis in Arabidopsis. Plant Cell Physiol 55:1994–2007

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munos S, Ranc N, Botton E, Berard A, Rolland S, Duffe P, Carretero Y, Le Paslier MC, Delalande C, Bouzayen M (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Escalante L, Zhao C, Shukle R, Stuart J (2020) BSA-Seq discovery and functional analysis of candidate hessian fly (Mayetiola destructor) avirulence genes. Front Plant Sci 11:956

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Liang X, Gao M, Liu H, Meng H, Weng Y, Cheng Z (2017) Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130:573–586

    Article  CAS  PubMed  Google Scholar 

  • Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez GR, Muños S, Anderson C, Sim S, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez G, Kim HJ, Van D (2013) Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 111:256–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Rym F, Hiroki T, Muluneh T, Akira A, Satoshi N, Hiroki Y, Shailendra S, Shiveta S, Hiroyuki K, Hideo M (2013) MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS One 8:e68529

  • Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK, White V, Chan E, Tolla G, White C, Safran D, Graham E, Knapp S, McGregor C (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125:1603–1618

    Article  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium - a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama Y, Wakazaki M, Toyooka K, Fukuda H, Oda Y (2017) A novel plasma membrane-anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains. Curr Biol 27:2522–2528

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Tanisaka T (2019) The gametic non-lethal gene Gal on chromosome 5 is indispensable for the transmission of the co-induced semidwarfing gene d60 in rice. Biology 8:94

    Article  CAS  PubMed Central  Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E, Huang ZJ, Keyhaninejad N, Mu Q, Sun L, Wang YP, Wu S (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Karamyshev AL (2020) Next generation sequencing (NGS) application in multiparameter gene expression analysis. Methods Molecular Biol 2102:17–34

    Article  CAS  Google Scholar 

  • Wang Y, Clevenger JP, Illa-Berenguer E, Meulia T, van der Knaap E, Sun L (2019) A comparison of sun, ovate, fs8.1 and auxin application on tomato fruit shape and gene expression. Plant Cell Physiol 60:1067–1081

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Fu W, Wang Y, Qin X, Wang J, Li J, Lou Q, Chen J (2016) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep 6:27496

  • Weng Y, Colle M, Wang Y, Yang L, Grumet R (2015) QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet 128:1747–1763

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E (2011) SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Radovich C, Welty N, Hsu J, Li D, Meulia T, van der Knaap E (2009) Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biol 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie D, Xu Y, Wang J, Liu W, Zhang Z (2019) The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nat Commun 10:5158

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin T, Zhang Z, Li S, Zhang S, Li Q, Zhang Z, Huang S, Yang X (2019) Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell 31:1063–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow CD, Wen C, Zhang X, Weng Y (2018) LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. Plant J 95:834–847

    Article  CAS  Google Scholar 

  • Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li X, Weng Y, Zhang X (2019) A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell 31:1289–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu WY, Huang L, Chen L, Yang JT, Wu JN, Qu ML, Yao DQ, Guo CL, Lian HL, He HL (2016) A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front Plant Sci 7:437

  • Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nature Science Foundation of China (31960593). This study was also supported by Guangxi Major Program of Science and Technology (Guike AA17204026).

Author information

Authors and Affiliations

Authors

Contributions

Author Contribution Statement

Z.G.L., W.J.Y., and P.W conceived and designed the study. Z.K.C. and Y.C.X conducted all of the experiments. L.L.M., J.Q.G., J.Y.C., L.W.S., W.T.W., and Y.C participated in some experiments. Z.K.C. and Y.C.X wrote the manuscript. Z.G.L., W.J.Y., and P.W revised the manuscript. Z.K.C., Z.G.L., and Y.C.X contributed equally. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sanwen Huang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Liu, Z., Xu, Y. et al. Fine mapping and identification of the candidate gene BFS for fruit shape in wax gourd (Benincasa hispida). Theor Appl Genet 134, 3983–3995 (2021). https://doi.org/10.1007/s00122-021-03942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03942-8

Navigation