Skip to main content
Log in

Identification of genomic loci conferring broad-spectrum resistance to multiple nematode species in exotic soybean accession PI 567305

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key Message

Genetic analysis identified a unique combination of major QTL for resistance to important soybean nematodes concurrently present in a single soybean accession, which has not been reported earlier.

Abstract

An exotic soybean [Glycine max (L.) Merr.] accession, PI 567305, was reported to be highly resistant to three important nematode species, soybean cyst (SCN), root-knot (RKN), and reniform (RN) nematodes. However, genetic basis controlling broad-spectrum resistance in this germplasm has not been investigated. We report results of genetic analysis to identify genomic loci conferring resistance to these nematode species. A bi-parental population consisting of 242 F8-derived recombinant inbred lines (RILs) was developed from a cross of a nematode susceptible cultivar, Magellan, and resistant accession, PI 567305. The RILs were phenotyped for nematode resistance to three SCN HG types. They were genotyped using the Infinium SoySNP6K BeadChips and genotype-by-sequencing (GBS) methods in an attempt to evaluate the cost-effectiveness and efficiency of these two genotyping platforms. Genetic analysis confirmed the major QTL on chromosomes (Chrs) 10 and 18 with broad-spectrum resistance to the three nematodes present in this germplasm. Haplotype and copy number variation analyses of SCN resistance QTL indicated that PI 567305 has a different haplotype, which is associated with likely a unique SCN resistance mechanism different from Peking- or PI 88788-type resistance. The evaluations of both Infinium Beadchip- and GBS-based genotyping technologies provided comprehensive insights for researchers to choose a cost-effective and efficient platform for QTL mapping and for other genomic studies in soybeans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akond M, Liu S, Schoener L, Anderson JA, Kantartzi SK, Meksem K, Song Q, Wang D, Wen Z, Lightfoot DA, Kassem MA (2013) A SNP-based genetic linkage map of soybean using the SoySNP6K Illumina Infinium BeadChip genotyping array. J Plant Genome Sci 1:80–89

    Google Scholar 

  • Allen TW, Bradley CA, Sisson AJ, Byamukama E, Chilvers MI, Coker CM, Collins AA, Damicone JP, Dorrance AE, Dufault NS, Esker PD (2017) Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Progress 18:19–27

    Article  Google Scholar 

  • Arelli A, Wilcox J, Myers O, Gibson P (1997) Soybean germplasm resistant to races 1 and 2 of Heterodera glycines. Crop Sci 37:1367–1369

    Article  Google Scholar 

  • Arelli PR, Pantalone VR, Allen F, Mengistu A, Fritz LA (2015) Registration of JTN-5203 soybean germplasm with resistance to multiple cyst nematode populations. J Plant Registrations 9:108–114

    Article  Google Scholar 

  • Arelli PR, Shannon JG, Mengistu A, Gillen AM, Fritz LA (2017) Registration of conventional soybean germplasm JTN-4307 with resistance to nematodes and fungal diseases. J Plant Registrations 11:192–199

    Article  Google Scholar 

  • Bajgain P, Rouse MN, Anderson JA (2016) Comparing genotyping-by-sequencing and single nucleotide polymorphism chip genotyping for quantitative trait loci mapping in wheat. Crop Sci 56:232–248

    Article  CAS  Google Scholar 

  • Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome 7:1–13

    Article  Google Scholar 

  • Bayless AM, Smith JM, Song J, McMinn PH, Teillet A, August BK, Bent AF (2016) Disease resistance through impairment of α-SNAP–NSF interaction and vesicular trafficking by soybean Rhg1. Proc Natl Acad Sci 113:7375–7382

    Article  CAS  Google Scholar 

  • Brown S, Yeckel R, Heinz K, Sleper D, Sleper MG, Mitchum MG (2010) A high-throughput automated technique for counting females of Heterodera glycines using a fluorescence-based imaging system. J Nematol 43:201–206

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genet 138:963–971

    Article  CAS  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    Article  CAS  Google Scholar 

  • Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209

    Article  CAS  PubMed  Google Scholar 

  • Davis EL, Koenning SR, Burton JW, Barker KR (1996) Greenhouse evaluation of selected soybean germplasm for resistance to North Carolina populations of Heterodera glycines, Rotylenchulus reniformis, and Meloidogyne species. J Nematol 28:590–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Elliott RJ (1999) Learning SAS in the computer lab, 2nd edn. Duxbury Thomson Learning, USA

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SA (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu YB, Cheng B, Peterson GW (2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet Resour Crop Evol 61:579–594

    Article  CAS  Google Scholar 

  • Guo B, Sleper DA, Arelli PR, Shannon JG, Nguyen HT (2005) Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet 111:965–971

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Sleper D, Nguyen H, Arelli P, Shannon J (2006) Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci 46:224–233

    Article  CAS  Google Scholar 

  • Ha BK, Bennett JB, Hussey RS, Finnerty SL, Boerma HR (2004) Pedigree analysis of a major QTL conditioning soybean resistance to southern root-knot nematode. Crop Sci 44:758–763

    Google Scholar 

  • Ha BK, Robbins RT, Han F, Hussey RS, Soper JF, Boerma HR (2007) SSR mapping and confirmation of soybean QTL from PI 437654 conditioning resistance to reniform nematode. Crop Sci 47:1336–1343

    Article  CAS  Google Scholar 

  • Hartman GL, Pawlowski ML, Herman TK, Eastburn DM (2016) Organically grown soybean production in the USA: Constraints and management of pathogens and insect pests. Agronomy 6:16

    Article  Google Scholar 

  • Harville BG, Green A, Birchfield W (1985) Genetic resistance to reniform nematodes in soybeans. Plant Dis 69:587–589

    Google Scholar 

  • Heim and Gillman (2017) Genotyping-by-sequencing-based investigation of the genetic architecture responsible for a ~sevenfold increase in soybean seed stearic acid. G3 7:299–308

  • Hussey RS, Boerma HR, Raymer PL, Luzzi BM (1991) Resistance in soybean cultivars from maturity groups V-VIII to soybean cyst and root-knot nematodes. J Nematol 23:576–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iquira E, Sonah H, Belzile F (2015) Association mapping of QTLs for Sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol 15:5–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15:740–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao YQ, Vuong TD, Liu Y, Meinhardt C, Liu Y, Joshi T, Cregan PB, Xu D, Shannon JG, Nguyen HT (2015a) Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655. Theor Appl Genet 128:15–23

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Vuong TD, Liu Y, Li Z, Noe J, Robbins RT, Joshi T, Xu D, Shannon JG, Nguyen HT (2015b) Identification of quantitative trait loci underlying resistance to southern root-knot and reniform nematodes in soybean accession PI 567516C. Mol Breeding 35:131–141

    Article  CAS  Google Scholar 

  • Kabelka E, Carlson S, Diers B (2005) Localization of two loci that confer resistance to soybean cyst nematode from PI 468916. Crop Sci 45:2473–2481

    Article  CAS  Google Scholar 

  • Kim KS, Qui D, Vuong TD, Robbins RT, Shannon JG, Li Z, Nguyen HT (2016) Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean. Theor Appl Genet 129:2295–2311

    Article  CAS  PubMed  Google Scholar 

  • Klepadlo M, Meinhardt CG, Vuong TD, Patil G, Bachleda N, Ye H, Robbins RT, Li Z, Shannon JG, Chen P, Meksem K, Nguyen HT (2018) Evaluation of soybean germplasm for resistance to multiple nematode species: Heterodera glycines, Meloidogyne incognita, and Rotylenchulus reniformis. Crop Sci 58:2511–2522

    Article  Google Scholar 

  • Lakhssassi N, Liu S, Bekal S, Zhou Z, Colantonio V, Lambert K, Barakat A, Meksem K (2017) Characterization of the soluble NSF attachment protein gene family identifies two members involved in additive resistance to a plant pathogen. Sci Reports 7:45226

    CAS  Google Scholar 

  • Lakhssassi N, Patil G, Piya S, Zhou Z, Baharlouei A, Kassem MA, Lightfoot DA, Hewezi T, Barakat A, Nguyen HT, Meksem K (2019) Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Sci Rep 9:1506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee YC, Lightfoot DA, Anderson J, Robbins RT, Kantartzi SK (2016) QTL underlying reniform nematode resistance in soybean cultivar Hartwig. Atlas J Biol. https://doi.org/10.5147/ajb.v0i0.41

    Article  Google Scholar 

  • Li Z, Jakkula L, Hussey R, Tamulonis J, Boerma H (2001) SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theor Appl Genet 103:1167–1173

    Article  CAS  Google Scholar 

  • Li H, Vikram P, Singh RP, Kilian A, Carling J, Song J, Burgueno-Ferreira JA, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S (2015) A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics 16:216–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin M, Cai S, Wang S, Liu S, Zhang G, Bai G (2015) Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley PE, Waugh R (2014) An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15:104–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Kandoth PK, Lakhssassi N, Kang J, Colantonio V, Heinz R, Yeckel G, Zhou Z, Bekal S, Dapprich J, Rotter B, Cianzio S, Mitchum MG, Meksem K (2017) The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat Comm 8:14822

    Article  CAS  Google Scholar 

  • Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Munoz-Amatriain M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76(4):718–727. https://doi.org/10.1111/tpj.12319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchum, (2016) Soybean resitance to the soybean cyst nemtode Heterodera glycines: Un update. Phytopathology 106(12):1444–1450. https://doi.org/10.1094/PHYTO-06-16-0227-RVW

    Article  CAS  Google Scholar 

  • Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, Rouf Mian MA, Dorrance AE, Shannon JG, Nguyen HT (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52:2481–2493

    Article  CAS  Google Scholar 

  • Passianotto ALL, Sonah H, Dias WP, Marcelino-Guimarães FC, Belzile F, Abdelnoor RV (2017) Genome-wide association study for resistance to the southern root-knot nematode (Meloidogyne incognita) in soybean. Mol Breeding 37(12):148–160. https://doi.org/10.1007/s11032-017-0744-3

    Article  CAS  Google Scholar 

  • Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:19199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil G, Vuong T, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Shi H, Lu F, Kumpatla S, Grover Shannon J, Varshney RK, Nguyen HT (2018) Dissecting of genomic hot-spots underlying seed composition traits using skim whole-genome sequencing approach in an interspecific cross between cultivated and wild soybeans. Plant Biotech J 16:1939–1953

    Article  CAS  Google Scholar 

  • Patil G, Lakhssassi N, Wan J, Song L, Zhou Z, Klepadlo M, Vuong TD, Stec AO, Kahil SS, Colantonio V, Valliyodan B, Rice H, Piya S, Hewezi T, Stupar RM, Meksem K, Nguyen HT (2019) Whole genome re-sequencing reveals the impact of copy number variants of the Rhg4 gene on broad-based resistance to soybean cyst nematode. Plant Biotech J 8:1595–1611

    Article  CAS  Google Scholar 

  • Pham AT, McNally K, Abdel-Haleem H, Boerma RH, Li Z (2013) Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354. Theor Appl Genet 126:1825–1838

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    CAS  Google Scholar 

  • Rebois RV, Johnson WC, Cairms EJ (1968) Resistance in soybeans, Glycine max (L) Merr. to the reniform nematode. Crop Sci 8:394–395

    Article  Google Scholar 

  • Robbins RT, Rakes L (1996) Resistance to the reniform nematode in selected soybean cultivars and germplasm lines. J Nematol 28:612–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins RT, Rakes L, Elkins CR (1994a) Reniform nematode reproduction and soybean yield of four soybean cultivars in Arkansas. J Nematol 26:656–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins RT, Rakes L, Elkins CR (1994b) Reproduction of the reniform nematode on thirty soybean cultivars. J Nematol 26:659–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins RT, Rakes L, Jackson LE, Dombek DG (1999) Reniform nematode resistance in selected soybean cultivars. J Nematol 31:667–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saintenac C, Jiang D, Wang S, Akhunov E (2013) Sequence-based mapping of the polyploid wheat genome. G3: Genes, Genomes, Genetics G3(3):1105–1115

    Article  CAS  Google Scholar 

  • Schapaugh W, Owen P, Clark K, Sleper D (1998) Registration of ‘Magellan’ soybean. Crop Sci 38:892

    Google Scholar 

  • Sonah H, Bastien M, Iquira E, Tardivel A, Legare G, Boyle B, Normandeau E, Laroche J, Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotech J 13:211–221

    Article  CAS  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8:e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Yan L, Quigley C, Fickus E, Wei H, Chen L, Dong F, Araya S, Liu J, Hyten D, Pantalone V, Nelson RL (2020) Soybean BARCSoySNP6K: an assay for soybean genetics and breeding research. Plant J 104(3):800–811. https://doi.org/10.1111/tpj.14960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarm SA, Sun L, Wang X, Wang W, Brown PJ, Ma J, Nelson RL (2019) Genetic dissection of domestication-related traits in soybean through genotyping-by-sequencing of two interspecific mapping populations. Theor Appl Genet 132:1195–1209

    Article  CAS  PubMed  Google Scholar 

  • Tamulonis J, Luzzi B, Hussey R, Parrott W, Boerma H (1997) RFLP mapping of resistance to southern root-knot nematode in soybean. Crop Sci 37:1903–1909

    Article  CAS  Google Scholar 

  • Torkamaneh D, Belzile F (2015) Scanning and filling: Ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data. PLoS ONE 10:11–17

    Article  CAS  Google Scholar 

  • Torkamaneh D, Laroche J, Belzile F (2016) Genome-wide SNP calling from genotyping-by-sequencing (GBS) data: a comparison of seven pipelines and two sequencing technologies. PLoS ONE 11:1–14

    Article  CAS  Google Scholar 

  • Torkamaneh D, Laroche J, Bastien M, Abed A, Belzile F (2017) Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. BMC Bioinf 18:5–11

    Article  CAS  Google Scholar 

  • Usovsky M, Lakhssassi N, Patil G, Vuong TD, Hewezi T, Robbins RT, Stupar RM, Meksem K, Nguyen HT (2021) Dissecting nematode resistance regions in soybean reveals pleiotropic effect of soybean cyst and reniform nematode resistance genes. Plant Genome. https://doi.org/10.1002/tpg2.20083

    Article  PubMed  Google Scholar 

  • Valliyodan B, Qiu D, Patil G, Zeng P, Huang J, Dai L, Chen C, Li Y, Joshi T, Song L, Vuong TD, Musket TA, Xu D, Shannon GJ, Shifeng C, Liu X, Nguyen HT (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Reports 6:23598

    CAS  Google Scholar 

  • Valliyodan B, Cannon SB, Bayer PE, Shu S, Brown AV, Ren L, Jenkins J, Chung CYL, Chan TF, Daum CG, Plott C, Hastie A, Baruch K, Barry KW, Huang W, Patil G, Varshney RK, Hu H, Batley J, Yuan Y, Song Q, Stupar RM, Goodstein DM, Stacey G, Lam HM, Jackson SA, Schmutz J, Grimwood J, Edwards D, Nguyen HT (2019) Construction and comparison of three reference-quality genome assemblies for soybean. Plant J 100:1066–1082

    Article  CAS  PubMed  Google Scholar 

  • JW Ooijen van 2004 MapQTL 5 software for the mapping quantitative trait loci in experimental populations Wageningen Plant Res Intl

  • van Ooijen JW (2006) JoinMap 4.0 software for the calculation of genetic linkage maps in experimental populations. Plant Res Intl, Wageningen

  • Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S (2015) High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS). Sci Reports 5:17512–17526

    CAS  Google Scholar 

  • Vuong TD, Sleper DA, Shannon JG, Nguyen HT (2010) Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet 121:1253–1266

    Article  CAS  PubMed  Google Scholar 

  • Vuong TD, Sleper DA, Shannon JG, Wu X, Nguyen HT (2011) Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines Ichinohe). Euphytica 181:101–113

    Article  Google Scholar 

  • Vuong TD, Sonah H, Deshmukh R, Kadam S, Meinhardt CG, Nelson R, Shannon JG, Nguyen HT (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16:593–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li H, Zhang L, Meng L (2016). Users' manual of QTL IciMapping. Beijing: The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) and Mexico City: Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT).

  • Webb DM (2003) Quantitative trait loci associated with soybean cyst nematode resistance and uses thereof. US Patent No. 6538175

  • Wei W, Mesquita ACO, Figueiró AA, Wu X, Manjunatha S, Wickland DP, Hudson ME, Juliatti FC, Clough SJ (2017) Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics 18:849–865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkes J, Saski C, Klepadlo M, Fallen B, Agudelo P (2020) Quantitative trait loci associated with Rotylenchulus reniformis host suitability in soybean. Phytopathology 110:1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Wrather JA, Koenning SR (2006) Estimates of disease effects on soybean yields in the United States 2003 to 2005. J Nematol 38:173–180

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT (2009) QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet 118:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107:10578–10583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 110:13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Xia X, Zhang Z, Nong B, Zeng Y, Xiong F, Wu Y, Gao J, Deng G, Li D (2017) QTL mapping by whole genome re-sequencing and analysis of candidate genes for nitrogen use efficiency in rice. Front Plant Sci 8:1634

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye H, Song L, Chen H, Valliyodan B, Ali L, Vuong T, Prince S, Wu C, Orlowski J, Buckley B, Chen P, Shannon GJ, Nguyen HT (2018) A major natural genetic variation associated with root system architecture and plasticity improve waterlogging tolerance and yield in soybean. Plant, Cell Environ 41:2169–2182

    CAS  Google Scholar 

  • Yue P, Arelli PR, Sleper DA (2001a) Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet 102:921–928

    Article  CAS  Google Scholar 

  • Yue P, Sleper DA, Arelli PR (2001b) Mapping resistance to multiple races of Heterodera glycines in soybean PI 89772. Crop Sci 41:1589–1595

    Article  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhebentyayeva TN, Sisco PH, Georgi LL, Jeffers SN, Perkins MT, James JB, Hebard FV, Saski C, Nelson CD, Abbott AG (2019) Dissecting resistance to Phytophthora cinnamomi in interspecific hybrid chestnut crosses using sequence-based genotyping and QTL mapping. Phytopathology 109:1594–1604

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Song L, Lian Y, Ye H, Usovsky M, Wan J, Vuong TD, Nguyen HT (2021) Genetic characterization of qSCN10 from an exotic soybean accession PI 567516C reveals a novel source conferring broad-spectrum resistance to soybean cyst nematode. Theor Appl Genet on-Line: https://doi.org/10.1007/s00122-020-03736-4

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the United States Department of Agriculture—National Institute of Food and Agriculture (USDA-NIFA) grant 2019-67013-29370—and the USDA-NIFA Hatch/Multistate grant MO-MSPS0002. The authors would like to thank undergraduate students for their technical assistance in field and laboratory work.

Author information

Authors and Affiliations

Authors

Contributions

TDV and HTN conceptualized the study; TDV led the investigation, performed data analysis, drafted the manuscript; HS and FB carried out GBS and data analysis; GP performed haplotype and CNV analysis; CM carried SCN phenotyping assay; MU and KSK contributed to the original draft; ZL coordinated RKN phenotyping assay; RR coordinated RN phenotyping assay; JGS provided technical discussion. All authors contributed their critical reviews of the manuscript during the preparation.

Corresponding authors

Correspondence to T. D. Vuong or H. T. Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Istvan Rajcan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, T.D., Sonah, H., Patil, G. et al. Identification of genomic loci conferring broad-spectrum resistance to multiple nematode species in exotic soybean accession PI 567305. Theor Appl Genet 134, 3379–3395 (2021). https://doi.org/10.1007/s00122-021-03903-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03903-1

Navigation