Skip to main content

Advertisement

Log in

Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement.

Abstract

Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hunger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aluru M, Xu Y, Guo R et al (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anuradha K, Agarwal S, Rao YV et al (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508:233–240

    Article  CAS  PubMed  Google Scholar 

  • Babu R, Palacios N (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399

    Article  CAS  PubMed  Google Scholar 

  • Bauriegel E, Giebel A, Herppich WB (2011) Hyperspectral and chlorophyll fluorescence imaging to analyse the Impact of Fusarium culmorum on the photosynthetic Integrity of Infected )Wheat Ears. Sensors 11:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer P, Al-Babili S, Ye X et al (2002) Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506S-510S

    Article  PubMed  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification: a sustainable agriculture strategy for reducing micronutrient malnutrition in the globle south. Crop Sci 50:S20–S32

    Article  Google Scholar 

  • Brunson AM, Quackenbush FW (1962) breeding corn with high Provitamin A in the grain1. Crop Sci 2:344–347

    Article  CAS  Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol 23:281–289

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Kutman UÁ (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69:172–180

    Article  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Calayugan MIC, Formantes AK, Amparado A et al (2020) Genetic analysis of agronomic traits and grain iron and zinc concentrations in a doubled haploid population of Rice (Oryza sativa L.). Sci Rep 10:2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calingacion M, Boualaphanh C, Daygon V et al (2012) A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics 8:771–783

    Article  CAS  Google Scholar 

  • Cantos C, Francisco P, Trijatmiko KR et al (2014) Identification of acœsafe harbora loci in Indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00302

    Article  PubMed  PubMed Central  Google Scholar 

  • Capocchi A, Bottega S, Spanò C et al (2017) Phytochemicals and antioxidant capacity in four Italian traditional maize (Zea mays L.) varieties. Int J Food Sci Nutr 68:515–524

    Article  CAS  PubMed  Google Scholar 

  • Chandel G, Dubey M, Gupta S et al (2017) Identification and characterization of a grain micronutrient- related OsFRO2 rice gene ortholog from micronutrient-rich little millet (Panicum sumatrense). 3 Biotech 7:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Che P, Zhao Z, Glassman K et al (2016) Elevated vitamin E content improves all- trans β -carotene accumulation and stability in biofortified sorghum. Proc Natl Acad Sci U S A 113(11040–5):113

    Google Scholar 

  • Clemente R, De La Fuente C, Moral R et al (2007) Changes in microbial biomass parameters of a heavy metal-contaminated calcareous soil during a field remediation experiment. J Environ Qual 36:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Coccina A, Cavagnaro TR, Pellegrino E et al (2019) The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biol 19:1–14

    Article  Google Scholar 

  • Colmsee C, Mascher M, Czauderna T et al (2012) OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biol 29(12):245

    Article  CAS  Google Scholar 

  • Cruet-burgos C, Cox S, Hu Z et al (2020) Advancing provitamin A biofortification in sorghum: genome-wide association studies of grain carotenoids in global germplasm. Plant Genome 13:e20013

    Article  CAS  PubMed  Google Scholar 

  • Das S, Chaki AK, Hossain A (2019) Breeding and agronomic approaches for the biofortification of zinc in wheat (Triticum aestivum L.) to combat zinc deficiency in millions of a population: a Bangladesh perspective. Acta Agrobot 72:1770

    Article  Google Scholar 

  • de Valenca AW, Bake A, Brouwer ID et al (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14

    Article  Google Scholar 

  • Detterbeck A, Nagel M, Rensch S et al (2019) The search for candidate genes associated with natural variation of grain Zn accumulation in barley. Biochem J 476:1889–1909

    Article  CAS  PubMed  Google Scholar 

  • Dionisio G (2018) Enrichment and identification of the most abundant zinc binding proteins in developing Barley grains by Zinc-IMAC capture and Nano LC-MS / MS. Proteomes 6:3

    Article  PubMed Central  CAS  Google Scholar 

  • Dixit S, Singh UM, Ragavendran A et al (2019) Identification of genomic region(s) responsible for high iron and zinc content in rice. Sci Rep 9:8136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong C, He F, Berkowitz O et al (2018) Alternative splicing plays a critical role in maintaining mineral nutrient homeostasis in Rice (Oryza sativa). Plant Cell 30:2267–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880

    Article  CAS  PubMed  Google Scholar 

  • Du J, Zeng D, Wang B et al (2013) Environmental effects on mineral accumulation in rice grains and identification of ecological specific QTLs. Environ Geochem Health 35:161–170

    Article  CAS  PubMed  Google Scholar 

  • Duan P, Ni S, Wang J et al (2015) Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2:15203

    Article  PubMed  CAS  Google Scholar 

  • Fernandez MGS, Hamblin MT, Li L et al (2008) Quantitative trait Loci analysis of endosperm color and carotenoid content in Sorghum grain. Crop Sci 48:1732–1743

    Article  Google Scholar 

  • Garg M, Sharma N, Sharma S, et al (2018) Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front Nutr 5:12

  • Gautam S, Platel K, Srinivasan K (2010) Influence of β-carotene-rich vegetables on the bioaccessibility of zinc and iron from food grains. Food Chem 122:668–672

    Article  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Gayen D, Paul S, Sarkar SN et al (2016) Comparative nutritional compositions and proteomics analysis of transgenic Xa21 rice seeds compared to conventional rice. Food Chem 203:301–307

    Article  CAS  PubMed  Google Scholar 

  • Golzarian MR, Frick RA, Rajendran K et al (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H et al (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Article  Google Scholar 

  • Gupta N, Ram H, Kumar B (2016) Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Biotechnol 15(1):89–109

    Article  CAS  Google Scholar 

  • Gyawali S, Otte M, Chao S et al (2017) Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley ( Hordeum vulgare L.). J Cereal Sci 77:266–227

    Article  CAS  Google Scholar 

  • Haas JD, Beard JL, Murray-Kolb LE et al (2005) Ironbiofortified rice improves the iron stores of nonanemic Filipino women. J Nutr 135:2823–2830

    Article  CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuberger S, Ellers-Kirk C, Tabashnik BE et al (2010) Pollen- and seed-mediated transgene flow in commercial cotton seed production fields. PLoS ONE 5:e14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindu V, Palacios-Rojas N, Babu R et al (2018) Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theor Appl Genet 131:1443–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain A, Mottaleb KA, Farhad M et al (2019) Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, “BARI Gom 33”, in Bangladesh. Acta Agrobot 72:1775

    Article  Google Scholar 

  • Hu Y, Wu Y, Li Q et al (2015) Solution structure of yeast Rpn9: insights into proteasome lid assembly. J Biol Chem 290:6878–6889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Zahir ZA, Asgha HN, et al (2018) Zinc solubilizing bacteria for zinc biofortification in cereals: a step toward sustainable nutritional security. In Meena V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8_7

  • Hwang T, Ndolo VU, Katundu M et al (2016) Provitamin A potential of landrace orange maize variety ( Zea mays L.) grown in different geographical locations of central Malawi. Food Chem 196:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Okubo T, Anda H et al (2010) Community- and genome-based views of plant-associated bacteria: Plant-bacterial interactions in Soybean and Rice. Plant Cell Physiol 51:1398–1410

    Article  CAS  PubMed  Google Scholar 

  • Imdad A, Mayo-Wilson E, Herzer K et al (2017) Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev 3:CD008524

    PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K et al (2010) Rice metalnicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T et al (2006) Riceplants take up iron as an Fe3+ -phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  CAS  PubMed  Google Scholar 

  • Jeng TL, Lin YW, Wang CS et al (2012) Comparisons and selection of rice mutants with high iron and zinc contents in their polished grains that were mutated from the indica type cultivar IR64. J Food Compos Anal 28:149–154

    Article  CAS  Google Scholar 

  • Jin T, Zhou J, Chen J et al (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 324:317–324

    Article  CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6:e24476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan B, Jung JH, Moxley GW et al (2017) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16(4):856–866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581(12):2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Kokane SB, Pathak RK, Singh M et al (2018) The role of tripartite interaction of calcium sensors and transporters in the accumulation of calcium in finger millet grain. Biol Plant 62:325–334

    Article  CAS  Google Scholar 

  • Kuhnen S, Menel M, Campestrini LH et al (2011) Carotenoid and anthocyanin contents of grains of Brazilian maize landraces. J Sci Food Agric 91:1548–1553

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Yadav S, Panwar P et al (2015) Identification of anchored simple sequence repeat markers associated with calcium content in finger millet ( Eleusine coracana ). Proc Natl Acad Sci India B Biol Sci 85:311–317

    Article  CAS  Google Scholar 

  • Kutman UB, Yildiz B, Ozturk L et al (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9

    Article  CAS  Google Scholar 

  • Lee S, Jeon US, Lee SJ et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci USA 106:22014–22019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim Y-S, Jeon US et al (2012) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells 33:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Liu X, Zhou X et al (2019) Improving zinc and iron accumulation in maize grains using the zinc and iron transporter ZmZIP5. Plant Cell Physiol 60:2077–2085

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipkie TE, De MFF, Zhao Z et al (2013) Bioaccessibility of carotenoids from transgenic Provitamin A Bioforti fi ed Sorghum. J Agric Food Chem 61:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Lonergan PF, Pallotta MA, Lorimer M, Paull JG, Barker SJ, Graham RD (2009) Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol 184:168–179

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Li L, Zheng X, Zhang Z, Mou T, Hu Z (2008) Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet 87:305–310

    Article  PubMed  Google Scholar 

  • Lu T, Lu G, Fan D et al (2010) Function annotation of rice transcriptome at single nucleotide resolution by rna-seq. Genome Res 20:1238–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long L, Persson DP, Duan F et al (2017) The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley. New Phytol 217:1640–1653

    Article  PubMed  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S-190S

    Article  CAS  PubMed  Google Scholar 

  • Lung MG, Mwaniki AM, Szalma SJ et al (2011) Genetic and physiological analysis of iron Biofortification in Maize. PLoS ONE 6:e20429

    Article  CAS  Google Scholar 

  • Majumdar S, Chakraborty B, Kundu R (2018) Comparative analysis of cadmium-induced stress responses by the aromatic and non-aromatic rice genotypes of West Bengal. Environ Sci Pollut Res 25:18451–18461

    Article  CAS  Google Scholar 

  • Mamo B, Barber B, Steffenson B (2014) Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J Cereal Sci 60:497

    Article  CAS  Google Scholar 

  • Masuda H, Aung MS, Nishizawa NK (2013) Iron biofortification of rice using different transgenic approaches. Rice (NY) 6:40

    Article  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  PubMed  Google Scholar 

  • Menguer PK, Vincent T, Miller AJ et al (2017) Improving zinc accumulation in barley endosperm using HvMTP1, a transition Improving zinc accumulation in cereal endosperm using HvMTP1, a transition metal transporter. Plant Biotechnol J 16:63–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Messias S, Galli V, Delmar S (2014) Carotenoid biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of Maize Landraces. Nutrients 6(2):546–563

    Article  PubMed Central  CAS  Google Scholar 

  • Micol JL (2009) Leaf development: Time to turn over a new leaf? Curr Opin in Plant Biol 12:9–16

    Article  CAS  Google Scholar 

  • Mirza N, Taj G, Arora S et al (2014) Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.). Gene 550:171–179

    Article  CAS  PubMed  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Dhaka A, Yadav R et al (2016) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2021) Small millets for enduring food security amidst pandemics. Trends Plant Sci 26:33–40

    Article  CAS  PubMed  Google Scholar 

  • Natesan S, Duraisamy T, Pukalenthy B (2020) Enhancing β -carotene concentration in parental lines of CO6 Maize hybrid through marker-assisted backcross breeding ( MABB ). Front Nutr 7:1–12

    Article  CAS  Google Scholar 

  • Paine J, Shipton C, Chaggar S et al (2005) Improving the nutritional value of Golden Rice through increased provitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE et al (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  PubMed  Google Scholar 

  • Paul JW, Qi Y (2016) CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep 35:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Ali N, Gayen D et al (2012) Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crops Food 3:310–316

    Article  PubMed  Google Scholar 

  • Phuke RM, Anuradha K, Radhika K et al (2017) Genetic variability, genotype × environment interaction, correlation, and GGE Biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of Sorghum (Sorghum bicolor L. Moench). Front Plant Sci 5:712

    Article  Google Scholar 

  • Podar D, Scherer J, Noordally Z et al (2012) Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 287:3185–3196

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Cai Y, Liu Z et al (2012) Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica 187:345–358

    Article  CAS  Google Scholar 

  • Qu Q, Yoshihara T, Ooyama A et al (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233

    Article  CAS  Google Scholar 

  • Raza Q, Riaz A, Sabar M, Muhammad R (2019) Meta-analysis of grain iron and zinc associated QTLs identified hotspot chromosomal regions and positional candidate genes for breeding biofortified rice. Plant Sci 288:110214

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Qi D, Pugh N et al (2019) Improvements to the rice genome annotation through large-scale analysis of RNA-Seq and proteomics data sets. Mol Cell Proteomics 18:86–98

    Article  CAS  PubMed  Google Scholar 

  • Reuscher S, Kolter A, Hoffmann A et al (2016) Quantitative trait Loci and inter-organ partitioning for essential metal and toxic analogue accumulation in Barley. PLoS ONE 11:e0153392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadeghzadeh B, Rengel Z, Li C (2015) Quantitative trait Loci (QTL) of seed Zn accumulation in barley population clipper x sahara. J Plant Nutr 38:1672–1684

    Article  CAS  Google Scholar 

  • Sadeghzadeh AD, Mohammad H, Kashi A, Ahmed A, Khoshnood A (2010) Genetic variability of some agronomic traits in the Iranian Fenugreek landraces under drought stress and non-stress conditions. Afr J Plant Sci 4:12-20

  • Saleh ASM, Zhang Q, Chen J et al (2013) Millet Grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Safety 12:281–295

    Article  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE et al (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  CAS  PubMed  Google Scholar 

  • Shakoor N, Ziegler G, Dilkes BP et al (2016) Integration of experiments across diverse environments identifies the genetic determinants of variation in sorghum bicolor seed element composition. Plant Physiol 170:1989–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Chauhan RS (2008) Identification of candidate gene-based markers (SNPs and SSRs) in the zinc and iron transport sequence of maize (Zea mays L.). Current Sci 95:1051–1059

    CAS  Google Scholar 

  • Shukla AK, Behera SK, Lenka NK et al (2016) Spatial variability of soil micronutrients in the intensively cultivated Trans-Gangetic Plains of India. Soil Tillage Res 163:282–289

    Article  Google Scholar 

  • Shukla K, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc finger nucleases. Nature 459:437–443

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Gruissem W, Bhullar NK (2017) Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Sci Rep 7:6883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh UM, Chandra M, Shankhdhar SC et al (2014) Transcriptome wide identification and validation of calcium sensor gene family in the developing spikes of finger millet genotypes for elucidating its role in grain calcium accumulation. PLoS ONE 9:e103963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivaprakash K, Krishnan S, And DSK, Parida A (2006) Tissue-specific histochemical localization of iron and ferritin gene expression in transgenic indica rice Pusa Basmati (Oryza sativa L.). J Genet 85:157–160

    Article  CAS  PubMed  Google Scholar 

  • Song J, Li D, He M et al (2015) Comparison of carotenoid composition in immature and mature grains of corn (Zea Mays L) Varieties comparison of carotenoid composition in immature and mature grains of corn ( Zea Mays L.) varieties. Int J Food Prop 19:351–358

    Article  CAS  Google Scholar 

  • Sperotto RA, Vasconcelos MW, Grusak MA et al (2012) Effects of different Fe supplies on mineral partitioning and remobilization during the reproductive development of rice (Oryza sativa L.). Rice 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens GA, Finucane MM, De-Regil LM et al (2013) Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Glob Health 1:e16-25

    Article  PubMed  PubMed Central  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N et al (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Morikawa KC, Nakanishi H et al (2008) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci & Plant Nutr 54(1):77–85

    Article  CAS  Google Scholar 

  • Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swamy BPM, Descalsota GIL, Nha CT et al (2018a) Identification of genomic regions associated with agronomic and biofortification traits in DH populations of rice. PLoS ONE 13:1–20

    Article  CAS  Google Scholar 

  • Swamy BPM, Kaladhar K, Anuradha K et al (2018b) QTL Analysis for grain iron and zinc concentrations in Two O. nivara derived backcross populations. Rice Sci 25:197–207

    Article  Google Scholar 

  • Tauris B, Borg S, Gregersen PL et al (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot 60:1333–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiong J, Mcdonald GK, Genc Y et al (2014) HvZIP7 mediates zinc accumulation in barley ( Hordeum vulgare ) at moderately high zinc supply. New Phytol 201(1):131–143

    Article  CAS  PubMed  Google Scholar 

  • Uarrota VG, Kobe S, Kuhnen S et al (2014) Biochemical Profile of leaf, silk and grain samples of eight Maize Landraces ( Zea mays L.) cultivated in two low-input agricultural systems. J Food Biochem 38:551–562

    Article  CAS  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I et al (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372

    Article  CAS  Google Scholar 

  • Vetriventhan M, Azevedo VC, Upadhyaya HD, et al (2020) Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. Nucleus 63:217–239

  • Virmani SS, Ilyas-Ahmed M (2008). Rice breeding for sustainable production. In: Kang MS, Priyadarshan P (eds) Breeding Major Food Staples. Oxford, UK: Blackwell Publishing Ltd https://doi.org/10.1002/9780470376447.ch6

  • Visser ME, Durao S, Sinclair D et al (2017) Micronutrient supplementation in adults with HIV infection. Cochrane Database Syst Rev 5:003650

    Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 7:e50568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biot J7(7):631–644

    Article  CAS  Google Scholar 

  • Yan J, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases β -carotene in maize grain. Nat Publ Gr 42:322–327

    CAS  Google Scholar 

  • Yang Wu, Bin T, Heyong H et al (2013) The study of zinc sulphide scintillator for fast neutron radiography. Phys Procedia 43:205–215

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 14(287):303–305

    Article  Google Scholar 

  • Zeng W, Hazebroek J, Beatty M et al (2014) Analytical method evaluation and discovery of variation within maize varieties in the context of food safety: transcript pro fi ling and metabolomics. J Agric Food Chem 62:2997–3009

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Huang F, Narsai R et al (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151:262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Ingram PA, Benfey PN et al (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work in the area of molecular genetics and genomics is supported by the Department of Biotechnology, Govt. of India, India. The authors also thank Dr. Lydia Pramitha for critically reading the manuscript. P Sushree Shyamli acknowledges the fellowship from DST-INSPIRE, Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

AP and MP conceived the review, outlined the contents, and supervised the entire study. PSS, SR, and SS wrote the first draft. PSS and SR prepared the tables and figures. MM critically revised the work, addressed the reviewers' comments, and finalized the manuscript.

Corresponding authors

Correspondence to Ajay Parida or Manoj Prasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Rajeev K. Varshney.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushree Shyamli, P., Rana, S., Suranjika, S. et al. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. Theor Appl Genet 134, 3147–3165 (2021). https://doi.org/10.1007/s00122-021-03878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03878-z

Navigation