Skip to main content
Log in

A methyl esterase 1 (PvMES1) promotes the salicylic acid pathway and enhances Fusarium wilt resistance in common beans

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Methyl esterase (MES), PvMES1, contributes to the defense response toward Fusarium wilt in common beans by regulating the salicylic acid (SA) mediated signaling pathway from phenylpropanoid synthesis and sugar metabolism as well as others.

Abstract

Common bean (Phaseolus vulgaris L.) is an important food legume. Fusarium wilt caused by Fusarium oxysporum f. sp. phaseoli is one of the most serious soil-borne diseases of common bean found throughout the world and affects the yield and quality of the crop. Few sources of Fusarium wilt resistance exist in legumes and most are of quantitative inheritance. In this study, we have identified a methyl esterase (MES), PvMES1, that contributes to plant defense response by regulating the salicylic acid (SA) mediated signaling pathway in response to Fusarium wilt in common beans. The result showed the role of PvMES1 in regulating SA levels in common bean and thus the SA signaling pathway and defense response mechanism in the plant. Overexpression of the PvMES1 gene enhanced Fusarium wilt resistance; while silencing of the gene caused susceptibility to the diseases. RNA-seq analysis with these transiently modified plants showed that genes related to SA level changes included the following gene ontologies: (a) phenylpropanoid synthesis; (b) sugar metabolism; and (c) interaction between host and pathogen as well as others. These key signal elements activated the defense response pathway in common bean to Fusarium wilt. Collectively, our findings indicate that PvMES1 plays a pivotal role in regulating SA biosynthesis and signaling, and increasing Fusarium wilt resistance in common bean, thus providing novel insight into the practical applications of both SA and MES genes and pathways they contribute to for developing elite crop varieties with enhanced broad-spectrum resistance to this critical disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data supporting the current study can be obtained by contacting the corresponding author (xuerf82@hotmail.com).

References

  • Albrecht U, Bowman KD (2008) Gene expression in Citrus sinensis (L) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Sci 175(3):291–306

    Article  CAS  Google Scholar 

  • Alessandra L, Luca P, Adriano M (2010) Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. J Plant Physiol 167:1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen QM, Markham KR (2006) Flavonoids. Chemistry, biochemistry and applications. CRC Press/Taylor & Francis Group/LLC CRC Press. Boca Raton/London/New York

  • Antoniw JF, White RF (1980) The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. J Phytopathol 98(4):331–341

    Article  CAS  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang HZ, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LSL (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assis JS, Maldonado R, Muoz T, Escribano MI, Merodio C (2001) Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit. Postharvest Biol Technol 23:33–39

    Article  CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei YD, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Izquierdo P, Astudillo C, Grusak MA (2012) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:1013–1017

    Google Scholar 

  • Blair MW, Wu J, Wang S (2016) Editorial: Food legume diversity and legume research policies. Crop Journal 4(5):339–343

    Article  Google Scholar 

  • Boba A, Kostyn K, Kostyn A, Wojtasik W, Dziadas M, Preisner M, Szopa J, Kulma A (2017) Methyl salicylate level increase in flax after Fusarium oxysporum infection is associated with phenylpropanoid pathway activation. Front Plant Sci 7:1951. https://doi.org/10.3389/fpls.2016.01951

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolouri Moghaddam MR, Van den Eden W (2012) Sugars and plant innate immunity. J Exp Bot 63(11):3989–3998

    Article  CAS  PubMed  Google Scholar 

  • Buruchara R, Camacho L (2000) Common bean reaction to Fusarium oxysporum f. sp. phaseoli, the cause of severe vascular wilt in Central Africa. J Phytopathol 148:39–45

    Article  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262(5141):1883–1886

    Article  CAS  PubMed  Google Scholar 

  • Chen JB, Wang SM, Jing RL, Mao XG (2009) Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol 166:12–19

    Article  CAS  PubMed  Google Scholar 

  • Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klingenberg A, Primavesi LF, Paul MJ, Schluepmann H (2011) Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiol 157:160–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempsey DA, Klessig DF (2012) SOS–too many signals for systemic acquired resistance? Trends Plant Sci 17:538–545

    Article  CAS  PubMed  Google Scholar 

  • Deng YY, Li JQ, Wu SF, Zhu YP, Chen YW, He FC (2006) Integrated nr database in protein annotation system and its localization. Comput Eng 32:71–74

    Google Scholar 

  • Díaz-Camino C, Annamalai P, Sanchez F, Kachroo A, Ghabrial SA (2011) An effective virus-based gene silencing method for functional genomics studies in common bean. Plant Methods 7:16. https://doi.org/10.1186/1746-4811-7-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding PT, Ding YL (2020) Stories of salicylic acid: aplant defense hormone. Trends Plant Sci 25(6):549–565

    Article  CAS  PubMed  Google Scholar 

  • Do HM, Hong JK, Jung HW, Kim SH, Ham JH, Hwang BK (2003) Expression of peroxidase like genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. Mol Plant Microbe In 16:196–205

    Article  CAS  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy ASN, Poovaiah BW (2009) Ca2+ /calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457(7233):1154–1158

    Article  CAS  PubMed  Google Scholar 

  • Forlani G (2010) Differential in vitro responses of rice cultivars to Italian lineages of the blast pathogen Pyricularia grisea. 2. aromatic biosynthesis. J Plant Physiol 167:928–932

    Article  CAS  PubMed  Google Scholar 

  • Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102(5):1773–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredeen AL, Rao IM, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89:225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51(2):294–330

    Article  CAS  PubMed  Google Scholar 

  • Gibertia S, Berteab CM, Narayanab R, Maffeib ME, Forlani G (2012) Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. J Plant Physiol 169:249–254

    Article  CAS  Google Scholar 

  • Gupta S, Chakraborti D, Sengupta A, Basu D, Das S (2010) Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. cicerirace I. Plos One. https://doi.org/10.1371/journal.pone.0009030

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular superoxide generation followed by an increase incytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39:721–730

    Article  CAS  Google Scholar 

  • Klessig DF, Choi HW, Dempsey DA (2018) Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant-Microbe Interact 31:871–888

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. P Natl Acad Sci USA 100:16101–16106

    Article  CAS  Google Scholar 

  • Kumar D, Gustafsson C, Klessig DF (2006) Validation of RNAi silencing specificity using synthetic genes: Salicylic acid-binding protein 2 is required for innate immunity in plants. Plant J 45:863–868

    Article  CAS  PubMed  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Plant microbiome. Salicylic acid mod ulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  PubMed  Google Scholar 

  • Lee MW, Lu H, Jung HW, Greenberg JT (2007) A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2. Mol Plant Microbe In 20:1192–1200

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Manosalva PM, Park SW, Forouhar F, Tong L, Fry WE, Klessig DF (2010) Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant Microbe In 23:1151–1163

    Article  CAS  Google Scholar 

  • Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Morkunas I, Ratajczak L (2014) The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant 36(7):1607–1619

    Article  CAS  Google Scholar 

  • Morkunas I, Marczak L, Stachowiak J, Stobiecki M (2005) Sucrose-induced lupine defense against Fusarium oxysporum: Sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium oxysporum. Plant Physiol Bioch 43(4):363–373

    Article  CAS  Google Scholar 

  • Morkunas I, Narożna D, Nowak W, Samardakiewicz W, Remlein-Starosta D (2011) Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine. J Plant Physiol 168:424–433

    Article  CAS  PubMed  Google Scholar 

  • Morkunas I, Formela M, Floryszak-Wieczorek J, Marczak Ł, Narożna D, Nowak W, Bednarski W (2013) Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum. Plant Sci 211:102–121

    Article  CAS  PubMed  Google Scholar 

  • Muchembled J, Lounès-HadjSahraoui A, Grandmougin-Ferjani A, Sancholle M (2006) Changes in lipid composition of Blumeria graminis f. sp. tritici conidia produced on wheat leaves treated with heptanoyl salicylic acid. Phytochemistry 67:1104–1109

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW (2007) The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol 144(2):1144–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007a) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007b) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282(13):10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Reignault P, Cojan A, Muchembled J, Sahouri AL, Durand R, Sancholle M (2001) Trehalose induces resistance to powdery mildew in wheat. New Phytol 149:519–529

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:185–205

    Article  CAS  Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in a perennial plant, Populusgelrica. Plant Physiol 57:308–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz HF, Hall R (2005) Compendium of Bean Diseases. American Phytopathological Society Press, St. Paul

    Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Smit F, Dubery LA (1997) Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry 44:811–815

    Article  CAS  Google Scholar 

  • Stokes ME, Chattopadhyay A, Wilkins O, Nambara E, Campbell MM (2013) Interplay between sucrose and folate modulates auxin signaling in Arabidopsis. Plant Physiol 162:1552–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez-Martínez SE, Ferriz-Martínez RA, Campos-Vega R, Elton-Puente JE, Carbot KDLT, García-Gasca T (2016) Bean seeds: leading nutraceutical source for human health. CyTA J Food 14:131–137

    Article  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso 1 promoter. Plant Cell 15:2076–12092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syros T, Yupsanis T, Zafiriadis H, Economou A (2004) Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J Plant Physiol 161:69–77

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA (2000) The COG database: a tool for genome scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thibaud MC, Gineste S, Nussaume L, Robaglia C (2004) Sucrose increases pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA-dependent but NPR1-independent signalling pathway. Plant Physiol Biochem 42:81–88

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varanasi AV, Talati JG (2014) Effect of exogenous salicylic acid on plant defense mechanism in chickpea (Cicer arietinum L.) against infection of Meloidogyne incognita. Indian J Agr Biochem 27(1):52–59

    CAS  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormoneto combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM (2016) Arabidopsis thaliana GH3 5 acyl acid amidosynthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. P Natl Acad Sci USA 113(48):13917–13922

    Article  CAS  Google Scholar 

  • White RF (1979) Acetylsalicylic acid induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    Article  CAS  PubMed  Google Scholar 

  • Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610–1614

    Article  CAS  PubMed  Google Scholar 

  • Xing F, Hua H, Selvaraj JN, Zhao Y, Zhou L, Liu X, Liu Y (2014) Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 46:343–350

    Article  CAS  Google Scholar 

  • Xue RF, Wu J, Wang LF, Blair MW, Wang XM, Ge WD, Wang SM (2014) Salicylic acid enhances resistance to Fusarium oxysporum f. sp. phaseoli in common beans (Phaseolus vulgaris L.). J Plant Growth Regul 33:470–476

    Article  CAS  Google Scholar 

  • Xue RF, Wu J, Zhu ZD, Wang LF, Wang XM, Wang SM, Blair MW (2015) Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. Plos One 10(6):e0127698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue RF, Wang L, Feng M, Ge WD (2018) Identification and expression analysis of likely orthologs of tobacco salicylic acid binding protein 2 in common beans. Acta Agron Sin 44(5):642–649

    Article  Google Scholar 

  • Zhang Y, Li X (2019) Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol 50:29–36

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxinsignaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145(2):450–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S (2019) A non-tandem CCCH-type zinc finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol 223:1918–1936

    Article  CAS  PubMed  Google Scholar 

  • Zhou JM, Zhang Y (2020) Plant Immunity: danger perception and signaling. Cell 181:978–989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Crop Germplasm GenBank-CAAS for seeds of common beans. This work was supported by the National Natural Science Foundation of China (Grant No. 31972962 and 31401447), China Agriculture Research System of MOF and MARA-Food Legumes (CARS-08) and the Evans Allen grant (TENX-07) from the United States Department of Agriculture (USDA). This article is protected by copyright with all rights reserved.

Author information

Authors and Affiliations

Authors

Contributions

Renfeng Xue and Matthew W. Blair planned the research. Renfeng Xue, Ming Feng and Jian Chen performed most of the important experiments. Renfeng Xue analyzed the sequencing data. Ming Feng and Renfeng Xue generated the constructs and treated plants. Matthew W. Blair provided some vectors and Weide Ge grew the plants. Ming Feng and Jian Chen contributed to analyze the testing data. Renfeng Xue and Matthew W. Blair wrote the article.

Corresponding author

Correspondence to Renfeng Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Janila Pasupuleti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, R., Feng, M., Chen, J. et al. A methyl esterase 1 (PvMES1) promotes the salicylic acid pathway and enhances Fusarium wilt resistance in common beans. Theor Appl Genet 134, 2379–2398 (2021). https://doi.org/10.1007/s00122-021-03830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03830-1

Profiles

  1. Renfeng Xue