Skip to main content

Meta-analysis of genome-wide association studies reveal common loci controlling agronomic and quality traits in a wide range of normal and heat stressed environments

Abstract

Key message

Several stable QTL were detected using metaGWAS analysis for different agronomic and quality traits under 26 normal and heat stressed environments.

Abstract

Heat stress, exacerbated by global warming, has a negative influence on wheat production worldwide and climate resilient cultivars can help mitigate these impacts. Selection decisions should therefore depend on multi-environment experiments representing a range of temperatures at critical stages of development. Here, we applied a meta-genome wide association analysis (metaGWAS) approach to detect stable QTL with significant effects across multiple environments. The metaGWAS was applied to 11 traits scored in 26 trials that were sown at optimal or late times of sowing (TOS1 and TOS2, respectively) at five locations. A total of 2571 unique wheat genotypes (13,959 genotypes across all environments) were included and the analysis conducted on TOS1, TOS2 and both times of sowing combined (TOS1&2). The germplasm was genotyped using a 90 k Infinium chip and imputed to exome sequence level, resulting in 341,195 single nucleotide polymorphisms (SNPs). The average accuracy across all imputed SNPs was high (92.4%). The three metaGWAS analyses revealed 107 QTL for the 11 traits, of which 16 were detected in all three analyses and 23 were detected in TOS1&2 only. The remaining QTL were detected in either TOS1 or TOS2 with or without TOS1&2, reflecting the complex interactions between the environments and the detected QTL. Eight QTL were associated with grain yield and seven with multiple traits. The identified QTL provide an important resource for gene enrichment and fine mapping to further understand the mechanisms of gene × environment interaction under both heat stressed and unstressed conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ain QU, Rasheed A, Anwar A, Mahmood T, Imtiaz M, He Z et al (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743

    PubMed  PubMed Central  Article  Google Scholar 

  2. Al-Rabbi SMH (2017) Genetics of drought tolerance in hard red sping wheat in the Northern United States of America (Doctoral dissertation, North Dakota State University)

  3. Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB et al (2015) Rising temperatures reduce global wheat production. Nat Clim Change 5:143–147

    Article  Google Scholar 

  4. Battenfield SD, Sheridan JL, Silva LD, Miclaus KJ, Dreisigacker S, Wolfinger RD et al (2018) Breeding-assisted genomics: Applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. PLoS ONE 13(11):e0204757

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K et al (2014) A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet 10(3):e1004198

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Browning BL, Browning SR (2016) Genotype imputation with millions of reference samples. Am J Hum Genet 98:116–126

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Chapman K, Ferreira T, Morris A, Asimit J, Zeggini E (2011) Defining the power limits of genome-wide association scan meta-analyses. Genet Epidemiol 35(8):781–789

    PubMed  PubMed Central  Article  Google Scholar 

  8. Chen H, Moakhar NP, Iqbal M, Pozniak C, Hucl P, Spaner D (2016) Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat. Euphytica 208(2):377–390

    CAS  Article  Google Scholar 

  9. Chen W, Sun D, Yan X, Li R, Wang S, Shi Y, Jing R (2019) QTL analysis of wheat kernel traits, and genetic effects of qKW-6A on kernel width. Euphytica 215(2):11

    Article  CAS  Google Scholar 

  10. Clark AG, Li J (2007) Conjuring SNPs to detect associations. Nat Genet 39(7):815–816

    CAS  PubMed  Article  Google Scholar 

  11. Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160(4):1710–1718

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A et al (2016) Next-generation genotype imputation service and methods. Nat Genet 48(10):1284–1287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60(4):469–480

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127(4):791–807

    CAS  PubMed  Article  Google Scholar 

  15. Evangelou E, Ioannidis JPA (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Fikere M, Barbulescu DM, Malmberg MM, Spangenberg GC, Cogan NO, Daetwyler HD (2020) Meta-analysis of GWAS in canola blackleg (Leptosphaeria maculans) disease traits demonstrates increased power from imputed whole-genome sequence. Sci Rep 10(1):14300

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Gilmour A, Gogel B, Cullis B, Thompson R (2009) ASReml User Guide Release 3.0. VSN International Ltd, Hemel Hempstead, HP1 1ES, United Kingdom

  18. Guan P, Lu L, Jia L, Kabir MR, Zhang J, Lan T et al (2018) Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci 9:529

    PubMed  PubMed Central  Article  Google Scholar 

  19. He S, Thistlethwaite R, Forrest K, Shi F, Hayden MJ, Trethowan R, Daetwyler HD (2019a) Extension of a haplotype-based genomic prediction model to manage multi-environment wheat data using environmental covariates. Theor Appl Genet 132(11):3143–3154

    CAS  PubMed  Article  Google Scholar 

  20. He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, Forrest K, Fritz A, Hucl P, Wiebe K, Knox R, Cuthbert R, Pozniak C, Akhunova A, Morrell PL, Davies J, Webb S, Spangenberg G, Hayes B, Daetwyler H, Tibbits J, Hayden MJ, Akhunov E (2019b) Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat Genet 51:896–904

    CAS  PubMed  Article  Google Scholar 

  21. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44(8):955–959

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Jamil M, Ali A, Gul A, Ghafoor A, Napar AA, Ibrahim AM et al (2019) Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC Plant Biol 19(1):149

    PubMed  PubMed Central  Article  Google Scholar 

  23. Joukhadar R, Hollaway G, Shi F, Kant S, Forrest K, Wong D et al (2020) Genome-wide association reveals a complex architecture for rust resistance in 2300 worldwide bread wheat accessions screened under various Australian conditions. Theor Appl Genet. https://doi.org/10.1007/s00122-020-03626-9

    Article  PubMed  Google Scholar 

  24. Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P et al (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16(1):1–18

    Article  Google Scholar 

  25. Juliana P, Poland J, Huerta-Espino J, Shrestha S, Crossa J, Crespo-Herrera L et al (2019) Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat Genet 51(10):1530–1539

    CAS  PubMed  Article  Google Scholar 

  26. Iqbal M, Navabi A, Yang RC, Salmon DF, Spaner D (2007) The effect of vernalization genes on earliness and related agronomic traits of spring wheat in northern growing regions. Crop Sci 47(3):1031–1039

    Article  Google Scholar 

  27. Kuzay S, Xu Y, Zhang J, Katz A, Pearce S, Su Z, Fraser M, Anderson JA, Brown-Guedira G, DeWitt N, Peters Haugrud A, Faris JD, Akhunov E, Bai G, Dubcovsky J (2019) Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. TAG. Theoretical and applied genetics. Theoretische und Angew Genetik 132(9):2689–2705

    CAS  Article  Google Scholar 

  28. Lin DY, Zeng D (2010) Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Genet Epidemiol Off Publ Int Genet Epidemiol Soc 34(1):60–66

    CAS  Google Scholar 

  29. Loh PR, Palamara PF, Price AL (2016) Fast and accurate long-range phasing in a UK Biobank cohort. Nat Genet 48(7):811–816

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63(10):3789–3798

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Lopes MS, Reynolds MP, McIntyre CL, Mathews KL, Kamali MJ, Mossad M et al (2013) QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor Appl Genet 126(4):971–984

    PubMed  Article  Google Scholar 

  32. Lopes MS, Dreisigacker S, Peña RJ, Sukumaran S, Reynolds MP (2015) Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet 128(3):453–464

    CAS  PubMed  Article  Google Scholar 

  33. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11(7):499–511

    CAS  Article  Google Scholar 

  34. Mason RE, Addison CK, Babar A, Acuna A, Lozada D, Subramanian N et al (2018) Diagnostic markers for vernalization and photoperiod loci improve genomic selection for grain yield and spectral reflectance in wheat. Crop Sci 58(1):242–252

    CAS  Article  Google Scholar 

  35. Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G-Y, Myles S (2015) LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 Genes Genomes Genet 5:2383–2390

    Google Scholar 

  36. Nuttall JG, O’Leary GJ, Panozzo JF, Walker CK, Barlow KM, Fitzgerald GJ (2017) Models of grain quality in wheat—a review. Field Crops Res 202:136–145

    Article  Google Scholar 

  37. Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A, Makdis F, Wuletaw T et al (2017) Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130(9):1819–1835

    PubMed  Article  PubMed Central  Google Scholar 

  38. Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T et al (2008) Climate change: can wheat beat the heat? Agr Ecosyst Environ 126(1–2):46–58

    Article  Google Scholar 

  39. Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125(3):561–575

    PubMed  Article  PubMed Central  Google Scholar 

  40. Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JP (2013) The power of meta-analysis in genome-wide association studies. Annu Rev Genom Hum Genet 14:441–465

    CAS  Article  Google Scholar 

  41. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H et al (2012) Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet 44(6):631–635

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Pasaniuc B, Price AL (2017) Dissecting the genetics of complex traits using summary association statistics. Nat Rev Genet 18:117–127

    CAS  PubMed  Article  Google Scholar 

  43. Quarrie SA, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD et al (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57(11):2627–2637

    CAS  PubMed  Article  Google Scholar 

  44. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insuffcient to double global crop production by 2050. PLoS ONE 8:e66428

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Roshyara NR, Scholz M (2015) Impact of genetic similarity on imputation accuracy. BMC Genet 16(1):1–16

    CAS  Article  Google Scholar 

  46. Schmidt J, Tricker PJ, Eckermann P, Kalambettu P, Garcia M, Fleury DL (2020) Novel alleles for combined drought and heat stress tolerance in wheat. Front Plant Sci 10:1800

    PubMed  PubMed Central  Article  Google Scholar 

  47. Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PVV, Nayyar H (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705. https://doi.org/10.3389/fpls.2018.01705

    Article  PubMed  PubMed Central  Google Scholar 

  48. Simmonds J, Scott P, Leverington-Waite M, Turner AS, Brinton J, Korzun V et al (2014) Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol 14(1):1–13

    Article  Google Scholar 

  49. Shi F, Tibbits J, Pasam RK, Kay P, Wong D, Petkowski J et al (2017) Exome sequence genotype imputation in globally diverse hexaploid wheat accessions. Theor Appl Genet 130(7):1393–1404

    CAS  PubMed  Article  Google Scholar 

  50. Shirdelmoghanloo H (2015) Genetic and physiological studies of heat tolerance in hexaploid wheat (Triticum aestivum L.) (Doctoral dissertation)

  51. Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet 128(2):353–363

    CAS  PubMed  Article  Google Scholar 

  52. Sukumaran S, Lopes M, Dreisigacker S, Reynolds M (2017) Genome wide association mapping for grain weight in spring wheat across multiple environments. In: Proceedings of the 3rd international TRIGO (wheat) yield potential workshop, CENEB, CIMMYT, Cd. Obregón, Sonora, México March 22–23rd; edited by: Matthew Reynolds, Gemma Molero and Alma McNab, pp 20–27

  53. Sukumaran S, Lopes M, Dreisigacker S, Reynolds M (2018a) Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor Appl Genet 131(4):985–998

    CAS  PubMed  Article  Google Scholar 

  54. Sukumaran S, Reynolds MP, Sansaloni C (2018b) Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front Plant Sci 9:81

    PubMed  PubMed Central  Article  Google Scholar 

  55. Tadesse W, Suleiman S, Tahir I, Sanchez-Garcia M, Jighly A, Hagras A et al (2019) Heat-tolerant QTLs associated with grain yield and its components in spring bread wheat under heat-stressed environments of Sudan and Egypt. Crop Sci 59(1):199–211

    CAS  Article  Google Scholar 

  56. Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215

    Article  Google Scholar 

  57. Thistlethwaite RJ, Tan DK, Bokshi AI, Ullah S, Trethowan RM (2020) A phenotyping strategy for evaluating the high-temperature tolerance of wheat. Field Crops Res 255:107905

    Article  Google Scholar 

  58. Voss-Fels KP, Keeble-Gagnère G, Hickey LT, Tibbits J, Nagornyy S, Hayden MJ, Pasam RK, Kant S, Friedt W, Snowdon RJ, Appels R, Wittkop B (2019) High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat. TAG. Theoretical and applied genetics. Theoret und Angew Genetik 132(9):2707–2719

    CAS  Article  Google Scholar 

  59. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Mägi R et al (2014) Quality control and conduct of genome-wide association meta-analyses. Nat Protoc 9(5):1192–1212

    PubMed  PubMed Central  Article  Google Scholar 

  61. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Zhao J, Sauvage C, Zhao J, Bitton F, Bauchet G, Liu D et al (2019) Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nat Commun 10(1):1–12

    Article  CAS  Google Scholar 

  63. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44(7):821–824

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 11(4):407–409

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

HD, RiT, RJ: planned the study; RJ: analysed the data and drafted the manuscript; ReT,RiT,SU phenotyped the population; MH: provided the genotype data; GKG: defined the overlap between 90k and exome data; HD: supervised the study; all authors read, edited and approved the final copy of the manuscript.

Corresponding author

Correspondence to Reem Joukhadar.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ian Mackay.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joukhadar, R., Thistlethwaite, R., Trethowan, R. et al. Meta-analysis of genome-wide association studies reveal common loci controlling agronomic and quality traits in a wide range of normal and heat stressed environments. Theor Appl Genet 134, 2113–2127 (2021). https://doi.org/10.1007/s00122-021-03809-y

Download citation