Skip to main content

Molecular mapping of quantitative disease resistance loci for soybean partial resistance to Phytophthora sansomeana

Abstract

Key message

Two soybean QDRL were identified with additive interaction to P. sansomeana isolate MPS17-22. Further analyses uncovered four interaction patterns between the two QDRL and seven additional P. sansomeana isolates.

Abstract

Phytophthora sansomeana is a recently recognized species that contributes to root rot in soybean. Previous studies indicated that P. sansomeana is widely distributed among soybean growing regions and has a much wider host range than P. sojae, a well-known pathogen of soybean. Unlike P. sojae, no known disease resistance genes have been documented that can effectively control P. sansomeana. Therefore, it is important to identify resistance that can be quickly integrated into future soybean varieties. E13901 is an improved soybean line that confers partial resistance to P. sansomeana. A mapping population of 228 F4:5 families was developed from a cross between E13901 and a susceptible improved soybean variety E13390. Using a composite interval mapping method, two quantitative disease resistance loci (QDRL) were identified on Chromosomes 5 (designated qPsan5.1) and 16 (designated qPsan16.1), respectively. qPsan5.1 was mapped at 54.71 cM between Gm05_32565157_T_C and Gm05_32327497_T_C. qPsan5.1 was contributed by E13390 and explained about 6% of the disease resistance variation. qPsan16.1 was located at 39.01 cM between Gm16_35700223_G_T and Gm16_35933600/ Gm16_35816475. qPsan16.1 was from E13901 and could explain 5.5% of partial disease resistance. Further analysis indicated an additive interaction of qPsan5.1 and qPsan16.1 against P. sansomeana isolate MPS17-22. Marker assisted resistance spectrum analysis and progeny tests verified the two QDRL and their interaction patterns with other P. sansomeana isolates. Both QDRL can be quickly integrated into soybean varieties using marker assisted selection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21(5):507–517

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Allen TW, Bradley CA, Sisson AJ, Byamukama E, Chilvers MI, Coker CM, Collins AA, Damicone JP, Dorrance AE, Dufault NS, Esker PD (2017) Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Progress 18(1):19–27

    Article  Google Scholar 

  3. An TJ, Park MS, Jeong JT, Kim YG, Kim YI, Lee ES, Chang JK (2019) Occurrence of the Phytophthora Blight Caused by Phytophthora sansomeana in Atractylodes macrocephala Koidz. Korean Journal of Medicinal Crop Science 27(6):404–411

    Article  Google Scholar 

  4. Bales C, Zhang G, Liu M, Mensah C, Gu C, Song Q, Hyten D, Cregan P, Wang D (2013) Mapping soybean aphid resistance genes in PI 567598B. Theor Appl Genet 126(8):2081–2091

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Bienapfl JC, Malvick DK, Percich JA (2011) Specific molecular detection of Phytophthora sojae using conventional and real-time PCR. Fungal Biol 115(8):733–740

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Caranta C, Lefebvre V, Palloix A (1997) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant Microbe Interact 10(7):872–878

    CAS  Article  Google Scholar 

  7. Chang KF, Hwang SF, Ahmed HU, Fu H, Zhou Q, Strelkov SE, Turnbull GD (2017) First report of Phytophthora sansomeana causing root rot in field pea in Alberta, Canada. Crop Prot 101:1–4

    CAS  Article  Google Scholar 

  8. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Dorrance AE, McClure SA, St. Martin SK 2003 Effect of partial resistance on Phytophthora stem rot incidence and yield of soybean in Ohio. Plant disease. 87(3):308–12

  10. Dorrance AE, Berry SA, Anderson TR, Meharg C (2008) Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Progress 9(1):35

    Article  Google Scholar 

  11. Dorrance AE, Robertson AE, Cianzo S, Giesler LJ, Grau CR, Draper MA, Tenuta AU, Anderson TR (2009) Integrated management strategies for Phytophthora sojae combining host resistance and seed treatments. Plant Dis 93(9):875–882

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Dorrance AE (2018) Management of Phytophthora sojae of soybean: a review and future perspectives. Can J Plant Path 40(2):210–219

    CAS  Article  Google Scholar 

  13. Farr, D.F., & Rossman, A.Y. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrieved February 3, 2021, from https://nt.ars-grin.gov/fungaldatabases/

  14. Fehr WR (1987) Heritability. Principles of cultivar development 1:95–105

    Google Scholar 

  15. Gibson G (2008) The environmental contribution to gene expression profiles. Nat Rev Genet 9(8):575–581

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Hacker CV, Brasier CM, Buck KW (2005) A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. J Gen Virol 86(5):1561–1570

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Hansen EM, Wilcox WF, Reeser PW, Sutton W. Phytophthora rosacearum and P. sansomeana, new species segregated from the Phytophthora megasperma “complex”. Mycologia. 2009 Jan 1;101(1):129–35

  18. Hansen EM, Reeser PW, Sutton W (2012) Phytophthora beyond agriculture. Annu Rev Phytopathol 8(50):359–378

    Article  CAS  Google Scholar 

  19. Karhoff S, Lee S, Mian MR, Ralston TI, Niblack TL, Dorrance AE, McHale LK (2019) Phenotypic characterization of a major quantitative disease resistance locus for partial resistance to Phytophthora sojae. Crop Sci 59(3):968–980

  20. Lee S, Mian MR, Sneller CH, Wang H, Dorrance AE, McHale LK (2014) Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet 127(2):429–444

    PubMed  Article  PubMed Central  Google Scholar 

  21. Li L, Lin F, Wang W, Ping J, Fitzgerald JC, Zhao M, Li S, Sun L, Cai C, Ma J (2016) Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean. Theor Appl Genet 129(12):2379–2386

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Li ZK, Arif M, Zhong DB, Fu BY, Xu JL, Domingo-Rey J, Ali J, Vijayakumar CH, Yu SB, Khush GS. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proceedings of the National Academy of Sciences. 2006 May 23;103(21):7994–9

  23. Lin F, Wani SH, Collins PJ, Wen Z, Gu C, Chilvers MI, Wang D. Mapping quantitative trait loci for tolerance to Pythium irregulare in soybean (Glycine max L.). G3: Genes, Genomes, Genetics. 2018 Oct 1;8(10):3155–61

  24. Lin F, Zhao M, Ping J, Johnson A, Zhang B, Abney TS, Hughes TJ, Ma J (2013) Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B. Theor Appl Genet 126(8):2177–2185

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Malvick DK, Grunden E (2004) Traits of soybean-infecting Phytophthora populations from Illinois agricultural fields. Plant Dis 88(10):1139–1145

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177(3):743–755

    PubMed  Article  PubMed Central  Google Scholar 

  27. McCoy, A., Jacobs, J.L. and Chilvers, M., 2018, August. Phytophthora sansomeana host characterization in Michigan field crops. In International Congress of Plant Pathology (ICPP) 2018: Plant Health in A Global Economy. APSNET.

  28. Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 1(27):446–455

    Article  Google Scholar 

  29. Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19(1):21

    CAS  Article  Google Scholar 

  30. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14(1):21–29

    CAS  Article  Google Scholar 

  31. Qiu HM, Li CY, Zhang DJ, Xin XJ, Wang JL, Wang J, Shan CY, Shan DP, Hu GH, Chen QS (2009) Proteome analysis of resistance to Phytophothra root rot in soybean. Acta Agronomica Sinica 35(3):418–423

    Google Scholar 

  32. Rahman MZ, Uematsu S, Suga H, Kageyama K (2015) Diversity of Phytophthora species newly reported from Japanese horticultural production. Mycoscience 56(4):443–459

    Article  Google Scholar 

  33. Reeser PW, Scott DH, Ruhl DE, 1991 Recovery of race non-classifiable Phytophthora megasperma f. sp. glycinea from soybean roots in Indiana in. Phytopathology, 81, 1201

  34. Rojas AJ, Jacobs JL, Napieralski S, Karaj B, Bradley CA, Chase T, Esker PD, Giesler LJ, Jardine DJ, Malvick DK, Markell SG (2017) Oomycete species associated with soybean seedlings in North America—Part I Identification and pathogenicity characterization. Phytopathology. 107(3):280–92

    Article  Google Scholar 

  35. Rojas JA, Miles TD, Coffey MD, Martin FN, Chilvers MI (2017) Development and application of qPCR and RPA genus-and species-specific detection of Phytophthora sojae and P. sansomeana root rot pathogens of soybean. Plant disease 101(7):1171–1181

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. Rojas JA, Witte A, Noel ZA, Jacobs JL, Chilvers MI (2019) Diversity and characterization of oomycetes associated with corn seedlings in Michigan. Phytobiomes Journal 3(3):224–234

    Article  Google Scholar 

  37. Safaiefarahani, B., Mostowfizadeh-Ghalamfarsa, R., Hardy, G.S.J. and Burgess, T.I., 2016. Characterization of Phytophthora pseudocryptogea× P. sansomeana, associated with sugar beet root rot in Fars Province

  38. Schmitthenner AF (2000) Phytophthora rot of soybean. Plant Health Progress 1(1):13

    Article  Google Scholar 

  39. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D (2010) Genome sequence palaeopolyploid soybean. Nature 463(7278):178–83

    CAS  Article  Google Scholar 

  40. Schneider R, Rolling W, Song Q, Cregan P, Dorrance AE, McHale LK (2016) Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genomics 17(1):607

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9(2):104–109

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PloS one. 8(1):e54985

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Srour A, Afzal AJ, Blahut-Beatty L, Hemmati N, Simmonds DH, Li W, Liu M, Town CD, Sharma H, Arelli P, Lightfoot DA (2012) The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses. BMC Genomics 13(1):368

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Stasko AK, Wickramasinghe D, Nauth BJ, Acharya B, Ellis ML, Taylor CG, McHale LK, Dorrance AE (2016) High-Density Mapping of Resistance QTL Toward Phytophthora sojae, Pythium irregulare, and Fusarium graminearum in the Same Soybean Population. Crop Sci 56(5):2476–2492

    CAS  Article  Google Scholar 

  45. St. DA, Clair (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annual rev phytopathol. 8(48):247–68

    Google Scholar 

  46. Tande, C., Dorrance, A.E., Schwarzrock, D., Mahecha, E. and Byamukama, E., 2020. First Report of Phytophthora sansomeana Causing Root Rot of Soybean in South Dakota. Plant Disease, pp.PDIS-09

  47. Tang QH, Gao F, Li GY, Wang H, Zheng XB, Wang YC (2010) First report of root rot caused by Phytophthora sansomeana on soybean in China. Plant Dis 94(3):378

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. Van Ooijen JW. JoinMap 4 (2006) Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands.;33

  49. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    CAS  Article  Google Scholar 

  50. Wang S, Basten CJ, Zeng ZB. Windows QTL cartographer (2007) 2.5. Department of statistics. North Carolina State University.

  51. Wang Z, Dai L, Jiang Z, Peng W, Zhang L, Wang G, Xie D (2005) GmCOI1, a soybean F-box protein gene, shows ability to mediate jasmonate-regulated plant defense and fertility in Arabidopsis. Mol Plant Microbe Interact 18(12):1285–1295

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23(3):285–295

    CAS  Article  Google Scholar 

  53. Zelaya-Molina LX, Ellis ML, Berry SA, Dorrance AE (2010) First report of Phytophthora sansomeana causing wilting and stunting on corn in Ohio. Plant Disease. 94(1):125

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Zhang G, Gu C, Wang D (2009) Molecular mapping of soybean aphid resistance genes in PI 567541B. Theor Appl Genet 118(3):473–482

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the funding support from Michigan Soybean Promotion Committee, USDA National Institute of Food and Agriculture (Hatch project 1011788) and AgBioResearch at Michigan State University (Project No. MICL02013). We are also thankful to the Overseas Training Program for Young-Backbone Teachers of Hebei Agricultural University to WL. We are also thankful to University Grants Commission (UGC), India, for providing Raman Postdoctoral Fellowship (5-20/2016(IC)) to SHW. We also thank YB, RT, and SZ for their help in creating and maintaining the mapping populations.

Author information

Affiliations

Authors

Contributions

DW, MIC, and FL designed the research. FL, WL, AGM, XG, PJC, NZ, ZW, SC, SHW, and CG carried out the experiments. FL, WL, and XG analyzed the data. FL, WL, and AGM developed the draft manuscript. DW and MIC supervised the manuscript. All authors revised the manuscript and contributed to the final manuscript.

Corresponding author

Correspondence to Dechun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Volker Hahn.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Li, W., McCoy, A.G. et al. Molecular mapping of quantitative disease resistance loci for soybean partial resistance to Phytophthora sansomeana. Theor Appl Genet 134, 1977–1987 (2021). https://doi.org/10.1007/s00122-021-03799-x

Download citation