Allard RW, Bradshaw AD (1964) Implications of genotype-environmental interactions in applied plant breeding. Crop Sci 4:503–508
Article
Google Scholar
Ballesteros-Rodríguez E, Martínez-Rueda CG, Morales-Rosales EJ, Estrada-Campuzano G, González GF (2019) Changes in number and weight of wheat and triticale grains to manipulation in source-sink relationship. Int J Agron 2019:7173841. https://doi.org/10.1155/2019/7173841
Article
Google Scholar
Blake NK, Lanning SP, Martin JM, Sherman JD, Talbert LE (2007) Relationship of flag leaf characteristics to economically important traits in two spring wheat crosses. Crop Sci 47(2):491–494. https://doi.org/10.2135/cropsci2006.05.0286
Article
Google Scholar
Blake NK, Lanning SP, Martin JM, Doyle M, Sherman JD, Naruoka Y, Talbert LE (2009) Effect of variation for major growth habit genes on maturity and yield in five spring wheat populations. Crop Sci 49(4):1211–1220. https://doi.org/10.2135/cropsci2008.08.0505
CAS
Article
Google Scholar
Blanco A, Mangini G, Giancaspro A, Giove S, Colasuonno P, Simeone R, Signorile A, De Vita P, Mastrangelo AM, Cattivelli L, Gadaleta A (2012) Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol Breed 30(1):79–92. https://doi.org/10.1007/s11032-011-9600-z
CAS
Article
Google Scholar
Brinton J, Uauy C (2018) A reductionist approach to dissecting grain weight and yield in wheat. J Integr Plant Biol 61(3):337–358. https://doi.org/10.1111/jipb.12741
Article
Google Scholar
Bustos DV, Hasan AK, Reynolds MP, Calderini DF (2013) Combining high grain number and weight through a DH-population to improve grain yield potential of wheat in high-yielding environments. Field Crop Res. https://doi.org/10.1016/j.fcr.2013.01.015
Article
Google Scholar
Charmet G (2011) Wheat domestication: lessons for the future. Comptes Rendus Biol 334(3):212–220. https://doi.org/10.1016/j.crvi.2010.12.013
Article
Google Scholar
Chen C, Neill K, Wichman D, Westcott M (2008) Hard red spring wheat response to row spacing, seeding rate, and nitrogen. Agron J 100(5):1296–1302. https://doi.org/10.2134/agronj2007.0198
Article
Google Scholar
Cuthbert JL, Somers DJ, Brûlé-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet. https://doi.org/10.1007/s00122-008-0804-5
Article
PubMed
Google Scholar
Dixon J, Braun HJ, Kosina PP, Crouch J (2009) Wheat facts and futures. CIMMYT, Mexico
Google Scholar
Elias E, Miller JD (2000) Registration of “Mountrail” durum wheat. Crop Sci 40:1499–1500
Google Scholar
El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM (2014) Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19(6):390–398. https://doi.org/10.1016/j.tplants.2014.01.001
CAS
Article
PubMed
Google Scholar
FAOSTAT. (2018) https://www.fao.org/faostat/en/#data/QC (accessed 8 July 2020).
Fischer RA (2007) Understanding the physiological basis of yield potential in wheat. J Agric Sci 145(2):99–113. https://doi.org/10.1017/S0021859607006843
Article
Google Scholar
Gaju O, Reynolds MP, Sparkes DL, Foulkes MJ (2009) Relationships between large-spike phenotype, grain number, and yield potential in spring wheat. Crop Sci 49(3):961–973. https://doi.org/10.2135/cropsci2008.05.0285
Article
Google Scholar
Gaju O, Reynolds MP, Sparkes DL, Mayes S, Ribas-Vargas G, Crossa J, Foulkes MJ (2014) Relationships between physiological traits, grain number and yield potential in a wheat DH population of large spike phenotype. Field Crop Res 164:126–135. https://doi.org/10.1016/j.fcr.2014.05.015
Article
Google Scholar
George T (2014) Why crop yields in developing countries have not kept pace with advances in agronomy. Glob Food Secur 3(1):49–58. https://doi.org/10.1016/J.GFS.2013.10.002
Article
Google Scholar
Goel S, Singh K, Singh B, Grewal S, Dwivedi N, Alqarawi AA, Abd_Allah EF, Ahmad P, Singh NK (2019) Analysis of genetic control and QTL mapping of essential wheat grain quality traits in a recombinant inbred population. PLoS One 14(3):e0200669. https://doi.org/10.1371/journal.pone.0200669
CAS
Article
PubMed
PubMed Central
Google Scholar
González FG, Miralles DJ, Slafer GA (2011) Wheat floret survival as related to pre-anthesis spike growth. J Exp Bot 62(14):4889–4901. https://doi.org/10.1093/jxb/err182
CAS
Article
PubMed
Google Scholar
González-Navarro OE, Griffiths S, Molero G, Reynolds MP, Slafer GA (2015) Dynamics of floret development determining differences in spike fertility in an elite population of wheat. Field Crop Res 172:21–31. https://doi.org/10.1016/j.fcr.2014.12.001
Article
Google Scholar
Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431487. https://doi.org/10.1155/2015/431487
CAS
Article
PubMed
PubMed Central
Google Scholar
Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106(6):1032–1040. https://doi.org/10.1007/s00122-002-1111-1
CAS
Article
PubMed
Google Scholar
Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 49(6):565–571. https://doi.org/10.1139/g06-063
Article
PubMed
Google Scholar
Haley SD, Afanador LK, Miklas PN, Stavely JR, Kelly JD (1994) Heterogeneous inbred populations are useful as sources of near-isogenic lines for RAPD marker localization. Theor Appl Genet 88(3):337–342. https://doi.org/10.1007/BF00223642
CAS
Article
PubMed
Google Scholar
Hatfield JL, Beres BL (2019) Yield gaps in wheat: path to enhancing productivity. Front Plant Sci 10:1603. https://doi.org/10.3389/fpls.2019.01603
Article
PubMed
PubMed Central
Google Scholar
Hatfield JL, Dold C (2018) Agroclimatology and wheat production: coping with climate change. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00224
Article
PubMed
PubMed Central
Google Scholar
Heo H-Y, Lanning SP, Lamb PF, Nash D, Wichman DM, Kephart KD, Stougaard RN, Miller J, Reddy GVP, Chen C, Eckhoff JL, Grey WE, Blake NK, Talbert LE (2016) Registration of ‘Lanning’ hard red spring wheat. J Plant Regist 10:287–290. https://doi.org/10.3198/jpr2016.03.0016crc
Article
Google Scholar
Jobson EM, Johnston RE, Oiestad AJ, Martin JM, Giroux MJ (2019) The Impact of the wheat Rht-B1b semi-dwarfing allele on photosynthesis and seed development under field conditions. Front Plant Sci 10:51. https://doi.org/10.3389/fpls.2019.00051
Article
PubMed
PubMed Central
Google Scholar
Jones BH, Blake NK, Heo H-Y, Kalous JR, Martin JM, Torrion JA, Talbert LE (2019) Improving hexaploid spring wheat by introgression of alleles for yield component traits from durum wheat. Crop Sci. https://doi.org/10.1002/csc2.20011
Article
Google Scholar
Kalous JR, Martin JM, Sherman JD, Heo H-Y, Blake NK, Lanning SP, Eckhoff JLA, Chao S, Akhunov E, Talbert LE (2015) Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross. Theor Appl Genet 128(9):1799–1811. https://doi.org/10.1007/s00122-015-2548-3
CAS
Article
PubMed
Google Scholar
Kang MS, Prabhakaran VT, Mehra RB (2004) Genotype-by-environment interaction in crop improvement. In: Jain HK, Kharkwal MC (eds) Plant breeding: mendelian to molecular approaches. Springer, Netherlands, pp 535–572. https://doi.org/10.1007/978-94-007-1040-5_23
Chapter
Google Scholar
Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007a) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115(8):1029–1041. https://doi.org/10.1007/s00122-007-0629-7
CAS
Article
PubMed
Google Scholar
Kuchel H, Williams K, Langridge P, Eagles HA, Jefferies SP (2007b) Genetic dissection of grain yield in bread wheat II. QTL-by-environment interaction. Theor Appl Genet 115(7):1015–1027. https://doi.org/10.1007/s00122-007-0628-8
CAS
Article
PubMed
Google Scholar
Kuzay S, Xu Y, Zhang J, Katz A, Pearce S, Su Z, Fraser M, Anderson JA, Brown-Guedira G, DeWitt N, Peters Haugrud A, Faris JD, Akhunov E, Bai G, Dubcovsky J (2019) Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet. https://doi.org/10.1007/s00122-019-03382-5
Article
PubMed
PubMed Central
Google Scholar
Lanning SP, Talbert LE, McGuire CF, Bowman HF, Carlson GR, Jackson GD, Eckhoff JL, Kushnak GD, Stougaard RN, Stallknecht GF, Wichman DM (1994) Registration of ‘McNeal’ wheat. Crop Sci 34:1126–1127. https://doi.org/10.2135/cropsci1994.0011183X003400040060x
Article
Google Scholar
Lanning SP, Bowman HF, Habernicht D, Carlson GR, Eckhoff JL, Kushnak GD, Stougaard RN, Wichman DM, Talbert LE (2000) Registration of “Scholar” wheat. Crop Sci 40(3):861–862
Google Scholar
Lanning SP, Carlson GR, Nash D, Wichman DM, Kephart KD, Stougaard RN, Kushnak GD, Eckhoff JL, Grey WE, Talbert LE (2004) Registration of ‘Choteau’ wheat. Crop Sci 44(6):2264–2265. https://doi.org/10.2135/cropsci2004.2264
Article
Google Scholar
Lanning SP, Carlson GR, Nash D, Wichman DM, Kephart KD, Stougaard RN, Kushnak GD, Eckhoff JL, Grey WE, Dyer A, Talbert LE (2006) Registration of ‘Vida’ wheat. Crop Sci 46(5):2315–2316. https://doi.org/10.2135/cropsci2006.03.0167
Article
Google Scholar
Lollato RP, Ruiz Diaz DA, DeWolf E, Knapp M, Peterson DE, Fritz AK (2019) Agronomic practices for reducing wheat yield gaps: a quantitative appraisal of progressive producers. Crop Sci 59(1):333–350. https://doi.org/10.2135/cropsci2018.04.0249
Article
Google Scholar
Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat how could it be reduced. J Agric Sci 145(2):139
Article
Google Scholar
Mitchell JH, Chapman SC, Rebetzke GJ, Bonnett DG, Fukai S (2012) Evaluation of a reduced-tillering tin gene in wheat lines grown across different production environments. Crop Pasture Sci 63(2):128–141. https://doi.org/10.1071/CP11260
Article
Google Scholar
Mitchell JH, Rebetzke GJ, Chapman SC, Fukai S (2013) Evaluation of reduced-tillering (tin) wheat lines in managed, terminal water deficit environments. J Exp Bot 64(11):3439–3451. https://doi.org/10.1093/jxb/ert181
CAS
Article
PubMed
PubMed Central
Google Scholar
Mohammadi R, Farshadfar E, Amri A (2015) Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran. Crop J. https://doi.org/10.1016/j.cj.2015.08.003
Article
Google Scholar
Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254–257. https://doi.org/10.1038/nature11420
CAS
Article
PubMed
Google Scholar
Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD (2011) Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123(6):1043–1053. https://doi.org/10.1007/s00122-011-1646-0
CAS
Article
PubMed
Google Scholar
Naruoka Y, Sherman JD, Lanning SP, Blake NK, Martin JM, Talbert LE (2012) Genetic analysis of green leaf duration in spring wheat. Crop Sci 52(1):99–109. https://doi.org/10.2135/cropsci2011.05.0269
Article
Google Scholar
Nasseer AM, Martin JM, Heo HY, Blake NK, Sherman JD, Pumphrey M, Kephart KD, Lanning SP, Naruoka Y, Talbert LE (2016) Impact of a quantitative trait locus for tiller number on plasticity of agronomic traits in spring wheat. Crop Sci 56(2):595–602. https://doi.org/10.2135/cropsci2015.05.0325
CAS
Article
Google Scholar
Otteson BN, Mergoum M, Ransom JK (2007) Seeding sate and nitrogen management effects on spring wheat yield and yield components. Agron J 99(6):1615–1621. https://doi.org/10.2134/agronj2007.0002
CAS
Article
Google Scholar
Oury F-X, Godin C (2007) Yield and grain protein concentration in bread wheat: how to use the negative relationship between the two characters to identify favourable genotypes? Euphytica 157(1):45–57. https://doi.org/10.1007/s10681-007-9395-5
CAS
Article
Google Scholar
Oury FX, Bérard P, Brancourt-Hulmel M, Depatureaux C, Doussinault G, Galic N, Giraud A, Heumez E, Lecomte C, Pluchard P, Rolland B, Rousset M, Trottet M (2003) Yield and grain protein concentration in bread wheat: a review and a study of multi-annual data from a French breeding program. J Genet Breed 57:59–68
Google Scholar
Philipp N, Weichert H, Bohra U, Weschke W, Schulthess AW, Weber H (2018) Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLoS One 13(10):e0205452. https://doi.org/10.1371/journal.pone.0205452
CAS
Article
PubMed
PubMed Central
Google Scholar
Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for fusarium dead blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47(1):200–206. https://doi.org/10.2135/cropsci2006.03.0206
CAS
Article
Google Scholar
Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6(1):5989. https://doi.org/10.1038/ncomms6989
CAS
Article
PubMed
Google Scholar
Reynolds MP, Acevedo E, Sayre KD, Fischer RA (1994) Yield potential in modern wheat varieties: its association with a less competitive ideotype. Field Crop Res 37(3):149–160. https://doi.org/10.1016/0378-4290(94)90094-9
Article
Google Scholar
Reynolds MP, Trethowan R, Crossa J, Vargas M, Sayre KD (2002) Physiological factors associated with genotype by environment interaction in wheat. Field Crop Res. https://doi.org/10.1016/S0378-4290(02)00023-0
Article
Google Scholar
Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol. https://doi.org/10.1111/j.1744-7348.2005.03100.x
Article
Google Scholar
Sadras VO (2007) Evolutionary aspects of the trade-off between seed size and number in crops. Field Crop Res 100(2–3):125–138. https://doi.org/10.1016/j.fcr.2006.07.004
Article
Google Scholar
Sadras VO, Rebetzke GJ (2013) Plasticity of wheat grain yield is associated with plasticity of ear number. Crop Pasture Sci 64(3):234–243. https://doi.org/10.1071/CP13117
Article
Google Scholar
Schulthess AW, Reif JC, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Ganal MW, Röder MS, Jiang Y (2017) The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triticum aestivum L.). J Exp Bot 68(15):4089–4101. https://doi.org/10.1093/jxb/erx214
CAS
Article
PubMed
PubMed Central
Google Scholar
Simmonds J, Scott P, Brinton J, Mestre TC, Bush M, del Blanco A, Dubcovsky J, Uauy C (2016) A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet 129(6):1099–1112. https://doi.org/10.1007/s00122-016-2686-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Sinclair TR, Rufty TW (2012) Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob Food Sec 1(2):94–98. https://doi.org/10.1016/J.GFS.2012.07.001
Article
Google Scholar
Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142(2):117–128. https://doi.org/10.1111/j.1744-7348.2003.tb00237.x
Article
Google Scholar
Slafer GA, Savin R, Sadras VO (2014) Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop Res 157:71–83. https://doi.org/10.1016/j.fcr.2013.12.004
Article
Google Scholar
Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630. https://doi.org/10.1038/ng2014
CAS
Article
PubMed
Google Scholar
Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain number in cereals. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2011.11.003
Article
PubMed
Google Scholar
Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet 128(2):353–363. https://doi.org/10.1007/s00122-014-2435-3
CAS
Article
PubMed
Google Scholar
Talbert LE, Lanning SP, Murphy RL, Martin JM (2001) Grain fill duration in twelve hard red spring wheat crosses. Crop Sci 41(5):1390–1395. https://doi.org/10.2135/cropsci2001.4151390x
Article
Google Scholar
Tompkins DK, Hultgreen GE, Wright AT, Fowler DB (1991) Seed rate and row spacing of no-till winter wheat. Agron J 83(4):684–689. https://doi.org/10.2134/agronj1991.00021962008300040007x
Article
Google Scholar
Torrion JA, Stougaard RN (2017) Impacts and limits of irrigation water management on wheat yield and quality. Crop Sci 57(6):3239–3251. https://doi.org/10.2135/cropsci2016.12.1032
CAS
Article
Google Scholar
Trethowan RM, Singh RP, Huerta-Espino J, Crossa J, van Ginkel M (2001) Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crop Res 70(3):167–176. https://doi.org/10.1016/S0378-4290(00)00153-2
Article
Google Scholar
Tshikunde NM, Mashilo J, Shimelis H, Odindo A (2019) Agronomic and physiological traits, and associated quantitative trait loci (QTL) affecting yield response in wheat (Triticum aestivum L.): a review. Front Plant Sci 10:1428. https://doi.org/10.3389/fpls.2019.01428
Article
PubMed
PubMed Central
Google Scholar
Underdahl JL, Mergoum M, Ransom JK, Schatz BG (2008) Agronomic traits improvement and associations in hard red spring wheat cultivars released in North Dakota from 1968 to 2006. Crop Sci 48(1):158–166. https://doi.org/10.2135/cropsci2007.01.0018
Article
Google Scholar
Waddington SR, Cartwright PM, Wall PC (1983) A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot 51(1):119–130
Article
Google Scholar
Walsh OS, Walsh WL (2020) Seeding rate and nitrogen fertilizer rate effect on dryland no-till hard red spring wheat yield and quality. Agrosystems Geosci Environ 3(1):e20001. https://doi.org/10.1002/agg2.20001
Article
Google Scholar
Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death—regulation by multiple layers of control and implications for aging in general. J Cell Sci 126(21):4823–4833. https://doi.org/10.1242/jcs.109116
CAS
Article
PubMed
Google Scholar
Zhang H, Turner NC, Poole ML (2010) Source-sink balance and manipulating sink-source relations of wheat indicate that the yield potential of wheat is sink-limited in high-rainfall zones. Crop Pasture Sci. https://doi.org/10.1071/CP10161
Article
Google Scholar
Zhang X, Chen J, Shi C, Chen J, Zheng F, Tian J (2013) Function of TaGW2–6A and its effect on grain weight in wheat (Triticum aestivum L.). Euphytica 192(3):347–357. https://doi.org/10.1007/s10681-012-0858-y
CAS
Article
Google Scholar
Zhang J, Gizaw SA, Bossolini E, Hegarty J, Howell T, Carter AH, Akhunov E, Dubcovsky J (2018) Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor Appl Genet 131(8):1741–1759. https://doi.org/10.1007/s00122-018-3111-9
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C, Wang D (2018) Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J 94(5):857–866. https://doi.org/10.1111/tpj.13903
CAS
Article
PubMed
Google Scholar