Skip to main content
Log in

Interactions and links among the noncoding RNAs in plants under stresses

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The complex interplay among sRNAs, lncRNAs and circRNAs has been implicated in plants under biotic and abiotic stresses. Here, we review current advances in our understanding of ncRNA interactions and links, which have considerable potential for improving the agronomic traits and the environmental adaptability of plants.

Abstract

Plants can respond to biotic or abiotic stresses. To cope with various conditions, numerous intricate molecular regulatory mechanisms have evolved in plants. Noncoding RNAs (ncRNAs) can be divided into small noncoding RNAs (sRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). Emerging evidence has demonstrated that interplay among the ncRNAs acts as a novel layer in the regulatory mechanisms, which has attracted substantial interest. Links between sRNAs can affect plant immune responses and development in synergistic or antagonistic manners. Additionally, multiple interactions between lncRNAs and sRNAs are involved in crop breeding, disease resistance and high tolerance to environmental stresses. Here, we summarize current knowledge of the interactions and links among the ncRNAs in plant responses to stresses and the methods for identifying ncRNA interactions. Furthermore, challenges and prospects for further progress in elucidating ncRNA interactions and links are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Axtell MJ, Meyers BC (2018) Revisiting criteria for plant MicroRNA annotation in the era of big data. Plant Cell 30:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Ben Amor B, Wirth S, Merchan F, Laporte P, d’Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia G, Goyal N, Sharma S, Upadhyay SK, Singh K (2017) Present scenario of long non-coding RNAs in plants. Noncoding RNA 3:E16

    PubMed  Google Scholar 

  • Brown JW, Echeverria M, Qu LH (2003) Plant snoRNAs: functional evolution and new modes of gene expression. Trends Plant Sci 8:42–49

    Article  CAS  PubMed  Google Scholar 

  • Calixto CPG, Tzioutziou NA, James AB, Hornyik C, Guo W, Zhang R, Nimmo HG, Brown JWS (2019) Cold-dependent expression and alternative splicing of arabidopsis long non-coding RNAs. Front Plant Sci 10:235

    Article  PubMed  PubMed Central  Google Scholar 

  • Canto-Pastor A, Santos B, Valli AA, Summers W, Schornack S, Baulcombe DC (2019) Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci U S A 116:2755–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yu Y, Zhang X, Liu C, Ye C, Fan L (2016a) PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics 32:3528–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Wang C, Bao H, Chen H, Wang Y (2016b) Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Mol Genet Genomics 291:1663–1680

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Cui J, Wang L, Zhu Y, Lu Z, Jin B (2017a) Genome-wide identification of circular RNAs in Arabidopsis thaliana. Front Plant Sci 8:1678

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Meng J, Zhai JM, Xu P, Luan YS (2017b) MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid. Plant Sci 265:177–187

    Article  CAS  PubMed  Google Scholar 

  • Chu Q, Zhang X, Zhu X, Liu C, Mao L, Ye C, Zhu QH, Fan L (2017) PlantcircBase: a database for plant circular RNAs. Mol Plant 10:1126–1128

    Article  CAS  PubMed  Google Scholar 

  • Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C, Conn SJ (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053

    Article  CAS  PubMed  Google Scholar 

  • Couzigou JM, Lauressergues D, Andre O, Gutjahr C, Guillotin B, Becard G, Combier JP (2017) Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis. Cell Host Microbe 21:106–112

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Luan YS, Jiang N, Bao H, Meng J (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J 89:577–589

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Jiang N, Meng J, Yang G, Liu W, Zhou X, Ma N, Hou X, Luan Y (2019) LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato—Phytophthora infestans interactions. Plant J 97(5):933–946

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Wang JJ, Zhao JH, Fang YY, He XF, Guo HS, Duan CG (2020a) A Brassica miRNA regulates plant growth and immunity through distinct modes of action. Mol Plant 13:231–245

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Jiang N, Hou XX, Wu SH, Zhang Q, Meng J, Luan YS (2020b) Genome-wide identification of lncRNAs and analysis of ceRNA networks during tomato resistance to Phytophthora infestans. Phytopathology 110:456–464

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Rosa C, Reyes JL (2019) Northern blot analysis of microRNAs and other small RNAs in plants. Methods Mol Biol 1932:121–129

    Article  PubMed  CAS  Google Scholar 

  • Deng F, Zhang X, Wang W, Yuan R, Shen F (2018a) Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC Plant Biol 18:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng Y, Wang J, Tung J, Liu D, Zhou Y, He S, Du Y, Baker B, Li F (2018b) A role for small RNA in regulating innate immunity during plant growth. PLoS Pathog 14:e1006756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshpande S, Shuttleworth J, Yang J, Taramonli S, England M (2019) PLIT: an alignment-free computational tool for identification of long non-coding RNAs in plant transcriptomic datasets. Comput Biol Med 105:169–181

    Article  CAS  PubMed  Google Scholar 

  • Devers EA, Branscheid A, May P, Krajinski F (2011) Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156:1990–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du QG, Wang K, Zou C, Xu C, Li WX (2018) The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiol 177:1743–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eamens AL, Agius C, Smith NA, Waterhouse PM, Wang MB (2011) Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Mol Plant 4:157–170

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X, Xiao J, Meyers BC, Zhang Q (2016) PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci U S A 113:15144–15149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H, Zhao L, Li X, Teng X, Sun X, Sun L, Zhang MQ, Chen R, Zhao Y (2018) NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res 46:D308–D314

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Zhang XD, Liu XS, Tan SK, Chu SS, Meng JG, Zhao KX, Zheng JF, Yang ZM (2016) Characterization of long non-coding RNAs involved in cadmium toxic response in Brassica napus. RSC Adv 6:82157–82173

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Gahlaut V, Jaiswal V, Kumar A, Gupta PK (2016) Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theor Appl Genet 129:2019–2042

    Article  CAS  PubMed  Google Scholar 

  • Gai YP, Yuan SS, Zhao YN, Zhao HN, Zhang HL, Ji XL (2018) A novel LncRNA, MuLnc1, associated with environmental stress in Mulberry (Morus multicaulis). Front Plant Sci 9:669

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK (2019) Advances in understanding salt tolerance in rice. Theor Appl Genet 132:851–870

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Li J, Luo M, Li H, Chen Q, Wang L, Song S, Zhao L, Xu W, Zhang C, Wang S, Ma C (2019) Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1. Plant Physiol 180:966–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez G, Pallas V (2010) Can the import of mRNA into chloroplasts be mediated by a secondary structure of a small non-coding RNA? Plant Signal Behav 5:1517–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Chen X, Zhang X, Duan X, Pan T, Hu Q, Zhang Y, Zhong F, Liu J, Zhang H, Luo J, Wu K, Peng G, Luo H, Zhang L, Li X, Zhang H (2015) An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes. Nucleic Acids Res 43:3712–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong YH, Meng J, Zhang M, Luan YS (2020) Identification of tomato circular RNAs responsive to Phytophthora infestans. Gene 746:144652

    Article  CAS  PubMed  Google Scholar 

  • Hou XX, Cui J, Liu WW, Jiang N, Zhou XX, Qi H, Meng J, Luan YS (2019) LncRNA39026 enhances tomato resistance to Phytophthora infestans by decoying miR168a and inducing PR genes expression. Phytopathology 110(4):873–880

    Article  Google Scholar 

  • Huang CY, Wang H, Hu P, Hamby R, Jin H (2019) Small RNAs—big players in plant–microbe interactions. Cell Host Microbe 26:173–182

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Meng J, Cui J, Sun G, Luan YS (2018) Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Hortic Res 5:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang N, Cui J, Shi YS, Yang GL, Zhou XX, Hou XX, Meng J, Luan YS (2019) Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato–Phytophthora infestans interaction. Hortic Res 6:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang N, Cui J, Hou XX, Yang GL, Xiao Y, Han L, Meng J, Luan YS (2020) Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans. Plant J 103(4):1561–1574

    Article  CAS  PubMed  Google Scholar 

  • Kang Q, Meng J, Cui J, Luan YS, Chen M (2020) PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA–lncRNA interaction prediction. Bioinformatics 36:2986–2992

    Article  PubMed  CAS  Google Scholar 

  • Karakulah G, Yucebilgili Kurtoglu K, Unver T (2016) PeTMbase: a database of plant endogenous target mimics (eTMs). PLoS ONE 11:e0167698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Lai X, Bazin J, Webb S, Crespi M, Zubieta C, Conn SJ (2018) CircRNAs in plants. Adv Exp Med Biol 1087:329–343

    Article  CAS  PubMed  Google Scholar 

  • Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Becard G, Combier JP (2015) Primary transcripts of microRNAs encode regulatory peptides. Nature 520:90–93

    Article  CAS  PubMed  Google Scholar 

  • Ledford H (2019) Super-precise new CRISPR tool could tackle a plethora of genetic diseases. Nature 574:464–465

    Article  CAS  PubMed  Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109:1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zheng H, Zhang C, Han K, Wang S, Peng J, Lu Y, Zhao J, Xu P, Wu X, Li G, Chen J, Yan F (2016) Different virus-derived siRNAs profiles between leaves and fruits in cucumber green mottle mosaic virus-infected Lagenaria siceraria plants. Front Microbiol 7:1797

    PubMed  PubMed Central  Google Scholar 

  • Li QF, Zhang YC, Chen YQ, Yu Y (2017a) Circular RNAs roll into the regulatory network of plants. Biochem Biophy Res Commun 488:382–386

    Article  CAS  Google Scholar 

  • Li SJ, Castillo-Gonzalez C, Yu B, Zhang XR (2017b) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cheng XL, Liu D, Xu WH, Wise R, Shen QH (2014) The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Gene 10:e1004755

    Article  CAS  Google Scholar 

  • Liu WW, Meng J, Cui J, Luan YS (2017) Characterization and function of MicroRNA(*)s in plants. Front Plant Sci 8:2200

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, Luo J, Wang Y, Tian Q, Feng Q, Huang T, Han B (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan YS, Cui J, Li J, Jiang N, Liu P, Meng J (2018) Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum. Planta 247:127–138

    Article  CAS  PubMed  Google Scholar 

  • Lv L, Yu K, Lu H, Zhang X, Liu X, Sun C, Xu H, Zhang J, He X, Zhang D (2020) Transcriptome-wide identification of novel circular RNAs in soybean in response to low-phosphorus stress. PLoS ONE 15:e0227243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Nicole MC, Meteignier LV, Hong N, Wang G, Moffett P (2015) Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. J Exp Bot 66:919–932

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Mu J, Grierson D, Wang Y, Gao L, Zhao X, Zhu B, Luo Y, Shi K, Wang Q, Zuo J (2020) Noncoding RNAs: functional regulatory factors in tomato fruit ripening. Theor Appl Genet 133:1753–1762

    Article  CAS  PubMed  Google Scholar 

  • Mah SM, Buske C, Humphries RK, Kuchenbauer F (2010) miRNA*: a passenger stranded in RNA-induced silencing complex? Crit Rev Eukaryot Gene Expr 20:141–148

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Gou L, Chen D, Mao C, Jin Y, Wu P, Chen M (2011) PmiRKB: a plant microRNA knowledge base. Nucleic Acids Res 39:D181–D187

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Nie P, Chen C, Yin Q, Jiang C, Guo J, Zhao H, Niu D (2019) Function of miR825 and miR825* as negative regulators in Bacillus cereus AR156-elicited systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Int J Mol Sci 20:E5032

    Article  PubMed  CAS  Google Scholar 

  • Niu D, Xia J, Jiang C, Qi B, Ling X, Lin S, Zhang W, Guo J, Jin H, Zhao H (2016) Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis. J Integr Plant Biol 58:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira AC, Bovolenta LA, Nachtigall PG, Herkenhoff ME, Lemke N, Pinhal D (2017) Combining results from distinct MicroRNA target prediction tools enhances the performance of analyses. Front Genet 8:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ono M, Scott MS, Yamada K, Avolio F, Barton GJ, Lamond AI (2011) Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res 39:3879–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan T, Sun X, Liu Y, Li H, Deng G, Lin H, Wang S (2018) Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol Biol 96:217–229

    Article  CAS  PubMed  Google Scholar 

  • Paytuvi Gallart A, Hermoso Pulido A, Martinez Anzar, de Lagran I, Sanseverino W, Aiese Cigliano R (2016) GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 44:D1161–D1166

    Article  PubMed  CAS  Google Scholar 

  • Piwecka M, Glazar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kuhn R, Rosenmund C, Birchmeier C, Rajewsky N (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357:eaam8526

    Article  PubMed  CAS  Google Scholar 

  • Prasad A, Sharma N, Muthamilarasan M, Rana S, Prasad M (2019) Recent advances in small RNA mediated plant–virus interactions. Crit Rev Biotechnol 39:587–601

    Article  CAS  PubMed  Google Scholar 

  • Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger ME (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173

    Article  CAS  PubMed  Google Scholar 

  • Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SV, Williams S, Kappagantu M, Mitter N, Pappu HR (2017) Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Res 238:13–23

    Article  CAS  PubMed  Google Scholar 

  • Reichel M, Li Y, Li J, Millar AA (2015) Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol J 13:915–926

    Article  CAS  PubMed  Google Scholar 

  • Ritchie W, Flamant S, Rasko JE (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6:397–398

    Article  CAS  PubMed  Google Scholar 

  • Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci U S A 99:1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze S, Schafer BN, Parizotto EA, Voinnet O, Theres K (2010) LOST MERISTEMS genes regulate cell differentiation of central zone descendants in Arabidopsis shoot meristems. Plant J 64:668–678

    Article  CAS  PubMed  Google Scholar 

  • Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3:881–886

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyan J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siprashvili Z, Webster DE, Johnston D, Shenoy RM, Ungewickell AJ, Bhaduri A, Flockhart R, Zarnegar BJ, Che Y, Meschi F, Puglisi JD, Khavari PA (2016) The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nat Genet 48:53–58

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Eamens AL, Wang MB (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa C, Johansson C, Charon C, Manyani H, Sautter C, Kondorosi A, Crespi M (2001) Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Mol Cell Biol 21:354–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava PK, Moturu TR, Pandey P, Baldwin IT, Pandey SP (2014) A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genom 15:348

    Article  CAS  Google Scholar 

  • Summanwar A, Basu U, Rahman H, Kav N (2019) Identification of lncRNAs responsive to infection by Plasmodiophora brassicae in clubroot-susceptible and -resistant Brassica napus lines carrying resistance introgressed from rutabaga. Mol Plant Microbe Interact 32:1360–1377

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Wang H, Li G (2020a) Rcirc: an R package for circRNA analyses and visualization. Front Genet 11:548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Huang K, Han Z, Wang P, Fang Y (2020b) Genome-wide identification of Arabidopsis long noncoding RNAs in response to the blue light. Sci Rep 10:6229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19:175–182

    Article  CAS  PubMed  Google Scholar 

  • Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6:e1001031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandivier LE, Anderson SJ, Foley SW, Gregory BD (2016) The conservation and function of RNA secondary structure in plants. Annu Rev Plant Biol 67:463–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Wan JM (2015) Engineering thermotolerant plants: a solution to protecting crop production threatened by global warming. Sci Bull 60:1366–1367

    Article  Google Scholar 

  • Wang MB, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant Microbe Interact 25:1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Yu WG, Yang YW, Li X, Chen TZ, Liu TL, Ma N, Yang X, Liu RY, Zhang BL (2015a) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep 5:16946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MJ, Yuan DJ, Tu LL, Gao WH, He YH, Hu HY, Wang PC, Liu N, Lindsey K, Zhang XL (2015b) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol 207:1181–1197

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Dang RH, Li JX, Han Y, Ding N, Li XL, Jia MR, Li ZQ, Wei LZ, Jiang JZ, Fan YJ, Li BB, Jia WS (2015c) Drought tolerance evaluation of tobacco plants transformed with different set of genes under laboratory and field conditions. Sci Bull 60:616–628

    Article  CAS  Google Scholar 

  • Wang J, Tang Y, Yang Y, Ma N, Ling X, Kan J, He Z, Zhang B (2016a) Cotton leaf curl Multan virus-derived viral small RNAs can target cotton genes to promote viral infection. Front Plant Sci 7:1162

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yang M, Wei S, Qin F, Zhao H, Suo B (2016b) Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci 7:2024

    PubMed  Google Scholar 

  • Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M (2017a) Non-coding RNAs and their roles in stress response in plants. Genom Proteom Bioinform 15:301–312

    Article  Google Scholar 

  • Wang M, Wu HJ, Fang J, Chu CC, Wang XJ (2017b) A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160. Sci Bull 62:470–475

    Article  CAS  Google Scholar 

  • Wang Z, Liu Y, Li D, Li L, Zhang Q, Wang S, Huang H (2017c) Identification of circular RNAs in kiwifruit and their species-specific response to bacterial canker pathogen invasion. Front Plant Sci 8:413

    PubMed  PubMed Central  Google Scholar 

  • Wang JY, Yang YW, Jin LM, Ling XT, Liu TL, Chen TZ, Ji YH, Yu WG, Zhang BL (2018a) Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol 18:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Zhang D, Cui N, Yu Y, Yu G, Fan H (2018b) Transcriptome and miRNA analyses of the response to Corynespora cassiicola in cucumber. Sci Rep 8:7798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YX, Gao LP, Zhu BZ, Zhu HL, Luo YB, Wang Q, Zuo JH (2018c) Integrative analysis of long non-coding RNA acting as ceRNAs involved in chilling injury in tomato fruit. Gene 667:25–33

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Y, Zhao J, Huang J, Shi Y, Deng D (2018d) Unveiling gibberellin-responsive coding and long noncoding RNAs in maize. Plant Mol Biol 98:427–438

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li B, Li Y, Zhai X, Dong Y, Deng M, Zhao Z, Cao Y, Fan G (2018e) Identification and characterization of long noncoding RNA in Paulownia tomentosa treated with methyl methane sulfonate. Physiol Mol Biol Plants 24:325–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A, Hu J, Gao C, Chen G, Wang B, Lin C, Song L, Ding Y, Zhou G (2019) Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp.chinensis). Sci Rep 9:5002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Chang X, Jing Y, Zhao J, Fang Q, Sun M, Zhang Y, Li W, Li Y (2020) Identification and functional prediction of soybean CircRNAs involved in low-temperature responses. J Plant Physiol 250:153188

    Article  CAS  PubMed  Google Scholar 

  • Wen FL, Yue Y, He TF, Gao XM, Zhou ZS, Long XH (2020) Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene 738:144460

    Article  CAS  PubMed  Google Scholar 

  • Wierzbicki AT (2012) The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol 15:517–522

    Article  CAS  PubMed  Google Scholar 

  • Wilusz JE (2016) Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta 1859:128–138

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Cai C, Cheng J, Wang L, Wu C, Shi Y, Luo J, He L, Deng Y, Zhang X, Yuan Y, Cai Y (2018) Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq. PeerJ 6:e4500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie M, Zhang S, Yu B (2015) microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72:87–99

    Article  CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Hou QM, Khare T, Verma SK, Kumar V (2019) Exploring miRNAs for developing climate-resilient crops: a perspective review. Sci Total Environ 653:91–104

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G (2012) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24:415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Q, Wu F, Yan Z, Li J, Ma T, Zhang Y, Zhao Y, Wang Y, Zhang J (2019) Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery. BMC Plant Biol 19:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Li DY, Mao DH, Liu X, Ji CJ, Li XB, Zhao XF, Cheng ZK, Chen CY, Zhu LH (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell Environ 36:2207–2218

    Article  CAS  Google Scholar 

  • Yang T, Ma H, Zhang J, Wu T, Song T, Tian J, Yao Y (2019a) Systematic identification of long non-coding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. Plant J 100(3):572–590

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liu T, Shen D, Wang J, Ling X, Hu Z, Chen T, Hu J, Huang J, Yu W, Dou D, Wang MB, Zhang B (2019b) Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog 15:e1007534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Zhang T, Li J, Wu N, Wu G, Yang J, Chen X, He L, Chen J (2020) Chinese wheat mosaic virus-derived vsiRNA-20 can regulate virus infection in wheat through inhibition of vacuolar- (H(+))-PPase induced cell death. New Phytol 226:205–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye CY, Chen L, Liu C, Zhu QH, Fan L (2015) Widespread noncoding circular RNAs in plants. New Phytol 208:88–95

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang Y, Chen X, Chen Y (2019) Plant noncoding RNAs: hidden players in development and stress responses. Annu Rev Cell Dev Biol 35:407–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai JX, Jeong DH, De Paoli E, Park S, Rosen BD, Li YP, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Gene Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H (2011) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wu Z, Li Y, Wu J (2015) Biogenesis, function, and applications of virus-derived small RNAs in plants. Front Microbiol 6:1237

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hu W, Hao J, Lv S, Wang C, Tong W, Wang Y, Wang Y, Liu X, Ji W (2016) Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genom 17:238

    Article  CAS  Google Scholar 

  • Zhang S, Dou Y, Li S, Ren G, Chevalier D, Zhang C, Yu B (2018a) DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis. Plant Physiol 177:1142–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zheng Y, Ham BK, Zhang S, Fei Z, Lucas WJ (2018b) Plant lncRNAs are enriched in and move systemically through the phloem in response to phosphate deficiency. J Integr Plant Biol 61:492–508

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Fan Y, Sun X, Chen L, Terzaghi W, Bucher E, Li L, Dai M (2019) A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J 98:697–713

    Article  CAS  PubMed  Google Scholar 

  • Zhou XX, Cui J, Cui HN, Jiang N, Hou XX, Liu S, Gao P, Luan YS, Meng J, Luan FS (2020) Identification of lncRNAs and their regulatory relationships with target genes and corresponding miRNAs in melon response to powdery mildew fungi. Gene 735:144403

    Article  CAS  PubMed  Google Scholar 

  • Zhu YX, Jia JH, Yang L, Xia YC, Zhang HL, Jia JB, Zhou R, Nie PY, Yin JL, Ma DF, Liu LC (2019) Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol 19:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Chen C, Zeng J, Yun Z, Liu Y, Qu H, Jiang Y, Duan X, Xia R (2020) MicroRNA528, a hub regulator modulating ROS homeostasis via targeting of a diverse set of genes encoding copper-containing proteins in monocots. New Phytol 225:385–399

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Wang Q, Zhu B, Luo Y, Gao L (2016) Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun 479:132–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the National Natural Science Foundation of China (No. 31872116 and 61872055). We would like to acknowledge Prof. Mahinur S. Akkaya for polishing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YSL conceived the review topic. XXZ and JC wrote the manuscript in collaboration with all the other authors. XXZ arranged all the figures. JM and YSL modified the manuscript.

Corresponding author

Correspondence to Yushi Luan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Rajeev K. Varshney.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Cui, J., Meng, J. et al. Interactions and links among the noncoding RNAs in plants under stresses. Theor Appl Genet 133, 3235–3248 (2020). https://doi.org/10.1007/s00122-020-03690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03690-1

Navigation