Skip to main content

Advertisement

Log in

Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum)

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Common buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is an annual crop that is cultivated widely around the world and contains an abundance of nutrients and bioactive compounds. However, the yield of buckwheat is low compared to that of other major crops, and it contains proteins that cause allergic reactions in some people. Much research has aimed to improve or eliminate these undesirable traits, and some major advances have recently been made. Here, we review recent advances in buckwheat breeding materials, tools, and methods, including the development of self-compatible lines, genetic maps, a buckwheat genome database, and an efficient breeding strategy. We also describe emerging breeding methods for high-value lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BGDB:

Buckwheat genome database

BSA:

Bulked segregant analysis

CDSs:

Coding sequences

DFR:

Dihydroflavonol 4-reductase

ESTs:

Expression sequence tags

FISH:

Fluorescent in situ hybridization

GBS:

Genotyping by sequencing

NGS:

Next-generation sequencing

q-PCR:

Quantitative-PCR

QTL:

Quantitative trait locus

RAPD:

Random amplification of polymorphic DNA

RILs:

Recombinant inbred lines

SI:

Self-incompatibility (self-incompatible)

SC:

Self-compatibility (self-compatible)

SSRs:

Simple sequence repeats

TILLING:

Targeting induced local lesion in genomes

References

  • Ahokas H (1979) Cytolpasmic male-sterility in barley. Acta Agric Scand 29:219–224

    Google Scholar 

  • Aii J, Nagano M, Penner GA, Campbell CG, Adachi T (1998) Identification of RAPD markers linked to the homostylar (Ho) gene in buckwheat. Breed Sci 48:59–62

    CAS  Google Scholar 

  • Bonafaccia G, Marocchini M, Kreft I (2003) Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem 80:9–15

    CAS  Google Scholar 

  • Bratic AM, Majic DB, Miljus-Djukic JD, Jovanovic ZS, Maksimovic VR (2007) In planta transformation of buckwheat (Fagopyrum esculentum Moench.). Arch Biol Sci 59:135–138

    Google Scholar 

  • Brkljacic JM, Maksimovic VR, Radovic SR, Savic AP (1999) Isolation of metallothionein-like cDNA clone from buckwheat. J Plant Physiol 154:802–804

    CAS  Google Scholar 

  • Campbell C (1995) Inter-specific hybridization in the genus Fagopyrum. In: Proceedings of the 6th international symposium on buckwheat, Japan, pp 255–263

  • Chang ZY, Chen ZF, Wang N, Xie G, Lu JW, Yan W, Zhou JL, Tang XY, Deng XW (2016) Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA 113:14145–14150

    CAS  PubMed  Google Scholar 

  • Che J, Yamaji N, Yokosho K, Shen RF, Ma JF (2018) Two genes encoding a bacterial-type ATP-binding cassette transporter are implicated in aluminum tolerance in buckwheat. Plant Cell Physiol 59:2502–2511

    CAS  PubMed  Google Scholar 

  • Chen QF, Hsarn SLK, Zeller FJ (2007) Cytogenetic studies on diploid and autotetraploid common buckwheat and their autotriploid and trisomics. Crop Sci 47:2340–2345

    Google Scholar 

  • Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121–132

    CAS  PubMed  Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. Murray, London

    Google Scholar 

  • Dowrick VPJ (1956) Heterostyly and homostyly in Primula obconica. Heredity 10:219–236

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang ZW, Qi R, Li XF, Liu ZX (2014) Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant. Gene 550:200–206

    CAS  PubMed  Google Scholar 

  • Fang ZW, Li XP, Li XF, Liu ZX (2015) FaesPI, a Fagopyrum esculentum PISTILLATA ortholog, is involved only in stamen development. J Plant Biol 58:102–109

    CAS  Google Scholar 

  • Fujino K, Funatsuki H, Inada M, Shimono Y, Kikuta Y (2001) Expression, cloning, and immunological analysis of buckwheat (Fagopyrum esculentum Moench) seed storage proteins. J Agric Food Chem 49:1825–1829

    CAS  PubMed  Google Scholar 

  • Gao D, Jin F, Zhou M, Jiang YY (2019) Recent advances in single cell manipulation and biochemical analysis on microfluidics. Analyst 144:766–781

    CAS  PubMed  Google Scholar 

  • Gimenez-Bastida JA, Zielinski H (2015) Buckwheat as a functional food and its effects on health. J Agric Food Chem 63:7896–7913

    CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic-linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross -mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara T, Iwata H, Okuno K, Matsui K, Ohsawa R (2011) QTL analysis of photoperiod sensitivity in common buckwheat by using markers for expressed sequence tags and photoperiod-sensitivity candidate genes. Breed Sci 61:394–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara T, Shima T, Nagai H, Ryo Ohsawa R (2020a) Genetic analysis of photoperiod sensitivity associated with difference in ecotype in common buckwheat. Breed Sci. https://doi.org/10.1270/jsbbs.19118

    Article  PubMed  PubMed Central  Google Scholar 

  • Hara T, Takeshima R, Matsui K (2020b) Genes with different modes of inheritance regulate seed germination in preharvest-sprouting-tolerant lines of buckwheat (Fagopyrum esculentum). Jarq-Jpn Agric Res Q 54:137–143

    Google Scholar 

  • Huang XH, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    CAS  PubMed  Google Scholar 

  • Iwata H, Imon K, Tsumura Y, Ohsawa R (2005) Genetic diversity among Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars as determined from amplified fragment length polymorphism and simple sequence repeat markers and quantitative agronomic traits. Genome 48:367–377

    CAS  PubMed  Google Scholar 

  • Kasajima S, Katagiri C, Morishita T, Suzuki T, Mukasa Y (2017) Growth and yield of self-compatible and hybrid common buckwheat lines pollinated with and without flies. Plant Prod Sci 20:384–388

    Google Scholar 

  • Katsu K, Suzuki R, Tsuchiya W, Inagaki N, Yamazaki T, Hisano T, Yasui Y, Komori T, Koshio M, Kubota S, Walker AR, Furukawa K, Matsui K (2017) A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity. BMC Plant Biol 17:14

    Google Scholar 

  • Kawa JM, Taylor CG, Przybylski R (2003) Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem 51:7287–7291

    CAS  PubMed  Google Scholar 

  • Kikuchi S, Matsui K, Tanaka H, Ohnishi O, Tsujimoto H (2008) Chromosome evolution among seven Fagopyrum species revealed by fluorescence in situ hybridization (FISH) probed with rDNAs. Chromosome Sci 11:37–43

    Google Scholar 

  • Kim YK, Xu H, Park WT, Park NI, Lee SY, Park SU (2010) Genetic transformation of buckwheat (Fagopyrum esculentum M.) with Agrobacterium rhizogenes and production of rutin in transformed root cultures. Aust J Crop Sci 4:485–490

    CAS  Google Scholar 

  • Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361:866–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima M, Arai Y, Iwase N, Shirotori K, Shioiri H, Nozue M (2000a) Development of a simple and efficient method for transformation of buckwheat plants (Fagopyrum esculentum) using Agrobacterium tumefaciens. Biosci Biotechnol Biochem 64:845–847

    CAS  PubMed  Google Scholar 

  • Kojima M, Hihahara M, Shiori H, Nozue M, Yamamoto K, Sasaki T (2000b) Buckwheat transformed with cDNA of a rice MADS box gene is stimulated in branching. Plant Biotechnol 17:35–42

    CAS  Google Scholar 

  • Konishi T, Ohnishi O (2007) Close genetic relationship between cultivated and natural populations of common buckwheat in the Sanjiang area is not due to recent gene flow between them—an analysis using microsatellite markers. Genes Genet Syst 82:53–64

    CAS  PubMed  Google Scholar 

  • Konishi T, Yasui Y, Ohnishi O (2005) Original birthplace of cultivated common buckwheat inferred from genetic relationships among cultivated populations and natural populations of wild common buckwheat revealed by AFLP analysis. Genes Genet Syst 80:113–119

    CAS  PubMed  Google Scholar 

  • Konishi T, Iwata H, Yashiro K, Tsumura Y, Ohsawa R, Yasui Y, Ohnishi O (2006) Development and characterization of microsatellite markers for common buckwheat. Breed Sci 56:277–285

    CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreft I, Zhou M, Golob A, Germ M, Likar M, Dziedzic K, Luthar Z (2020) Breeding buckwheat for nutritional quality. Breed Sci. https://doi.org/10.1270/jsbbs.19016

    Article  PubMed  Google Scholar 

  • Kump B, Javornik B (1996) Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Sci 114:149–158

    CAS  Google Scholar 

  • Lei GJ, Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF (2017a) Functional characterization of two half-size ABC transporter genes in aluminium-accumulating buckwheat. New Phytol 215:1080–1089

    CAS  PubMed  Google Scholar 

  • Lei GJ, Yokosho K, Yamaji N, Ma JF (2017b) Two MATE transporters with different subcellular localization are involved in Al tolerance in buckwheat. Plant Cell Physiol 58:2179–2189

    CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J et al (2010a) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XH, Il Park N, Xu H, Woo SH, Park CH, Park SU (2010b) Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum). J Agric Food Chem 58:12176–12181

    CAS  PubMed  Google Scholar 

  • Li FL, Zeller FJ, Huang KF, Shi TX, Chen QF (2013) Improvement of fluorescent chromosome in situ PCR and its application in the phylogeny of the genus Fagopyrum Mill. using nuclear genes of chloroplast origin (cpDNA). Plant Syst Evol 299:1679–1691

    CAS  Google Scholar 

  • Li LY, Fang ZW, Li XF, Liu ZX (2017) Isolation and characterization of the C-class MADS-box gene from the distylous pseudo-cereal Fagopyrum esculentum. J Plant Biol 60:189–198

    CAS  Google Scholar 

  • Litt M, Luty JA (1989) A Hypervariable microsatellite revealed by invitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma KH, Kim NS, Lee GA, Lee SY, Lee JK, Yi JY, Park YJ, Kim TS, Gwag JG, Kwon SJ (2009) Development of SSR markers for studies of diversity in the genus Fagopyrum. Theor Appl Genet 119:1247–1254

    CAS  PubMed  Google Scholar 

  • Marshall HG (1969) Isolation of self-fertile, homomorphic forms in buckwheat, Fagopyrum sagittatum gilib. Crop Sci 9:651–653

    Google Scholar 

  • Marshall HG (1970) Registration of ‘Pennline 10’ buckwheat. Crop Sci 10:726

    Google Scholar 

  • Marshall HG (1979) Study of inbreeding depression, breeding-behavior, and heterosis with inbred lines of buckwheat. Crop Sci 19:110–114

    Google Scholar 

  • Matsui K, Walker AR (2020) Biosynthesis and regulation of flavonoids in buckwheat. Breed Sci. https://doi.org/10.1270/jsbbs.19041

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui K, Yasui Y (2020) Buckwheat heteromorphic self-incompatibility: genetics, genomics and application to breeding. Breed Sci. https://doi.org/10.1270/jsbbs.19083

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui K, Tetsuka T, Hara T (2003a) Two independent gene loci controlling non-brittle pedicels in buckwheat. Euphytica 134:203–208

    CAS  Google Scholar 

  • Matsui K, Tetsuka T, Nishio T, Hara T (2003b) Heteromorphic incompatibility retained in self-compatible plants produced by a cross between common and wild buckwheat. New Phytol 159:701–708

    CAS  Google Scholar 

  • Matsui K, Kiryu Y, Komatsuda T, Kurauchi N, Ohtani T, Tetsuka T (2004a) Identification of AFLP markers linked to non-seed shattering locus (sht1) in buckwheat and conversion to STS markers for marker-assisted selection. Genome 47:469–474

    CAS  PubMed  Google Scholar 

  • Matsui K, Nishio T, Tetsuka T (2004b) Genes outside the S supergene suppress S functions in buckwheat (Fagopyrum esculentum). Ann Bot 94:805–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui K, Nishio T, Tetsuka T (2007) Use of self-compatibility and modifier genes for breeding and genetic analysis in common buckwheat (Fagopyrum esculentum). Jarq-Jpn Agric Res Q 41:1–5

    CAS  Google Scholar 

  • Matsui K, Eguchi K, Tetsuka T (2008a) A novel gene that diverts the anthocyanin biosynthetic pathway towards the production of proanthocyanidins in common buckwheat (Fagopyrum esculentum). Breed Sci 58:143–148

    Google Scholar 

  • Matsui K, Tetsuka T, Hara T, Morishita T (2008b) Breeding and characterization of a new self-compatible common buckwheat parental line, ‘Buckwheat Norin-PL1’. Bull Natl Agric Res Cent Kyushu Okinawa Reg 49:1–17 (Japanese with English summary)

    Google Scholar 

  • Matsui K, Mori K, Koga Y, Fukuda Y, Furuta Y, Matsuura A, Tetsuka T (2013) Characterization of a novel early leaf-senescence line in common buckwheat (Fagopyrum esculentum). Jarq-Jpn Agric Res Q 47:371–375

    Google Scholar 

  • Matsui K, Oshima Y, Mitsuda N, Sakamoto S, Nishiba Y, Walker AR, Ohme-Takagi M, Robinson SP, Yasui Y, Mori M, Takami H (2018a) Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis. Plant Sci 274:466–475

    CAS  PubMed  Google Scholar 

  • Matsui K, Tomatsu T, Kinouchi S, Suzuki T, Sato T (2018b) Identification of a gene encoding glutathione S-transferase that is related to anthocyanin accumulation in buckwheat (Fagopyrum esculentum). J Plant Physiol 231:291–296

    CAS  PubMed  Google Scholar 

  • Matsui K, Mizuno N, Ueno M, Takeshima R, Yasui Y (2020) Development of co-dominant markers linked to a hemizygous region that is related to the self-compatibility locus (S) in buckwheat (Fagopyrum esculentum). Breed Sci. https://doi.org/10.1270/jsbbs.19129

    Article  PubMed  PubMed Central  Google Scholar 

  • Miljuš-Djukić J, Nešković M, Ninković S, Crkvenjokov R (1992) Agrobacterium-mediated transformation and plant regeneration of buckwheat (Fagopyrum esculentum Moench.). Plant Cell Tissue Organ Cult 29:101–108

    Google Scholar 

  • Mizuno N, Yasui Y (2019) Gene flow signature in the S-allele region of cultivated buckwheat. BMC Plant Biol 19:125

    PubMed  PubMed Central  Google Scholar 

  • Morishita T, Hara T, Hara T (2020) Important agronomic characteristics of yielding ability in common buckwheat; ecotype and ecological differentiation, preharvest sprouting resistance, shattering resistance, and lodging resistance. Breed Sci. https://doi.org/10.1270/jsbbs.19020

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris MR (1951) Cytogenetic studies on buckwheat—genetic and cytological studies of compatibility in relation to heterostyly in common buckwheat, Fagopyrum-sagittatum. J Hered 42:85–89

    CAS  PubMed  Google Scholar 

  • Mukasa Y, Suzuki T, Honda Y (2006) Emasculation of self-pollinating buckwheat using hot water. Breed Res 8:177–181 (in Japanese)

    Google Scholar 

  • Mukasa Y, Suzuki T, Honda Y (2010) A methodology for heterosis breeding of common buckwheat involving the use of the self-compatibility gene derived from Fagopyrum homotropicum. Euphytica 172:207–214

    Google Scholar 

  • Murai K (1998) F1 seed production efficiency by using photoperiod-sensitive cytoplasmic male sterility and performance of F1 hybrid lines in wheat. Breed Sci 48:35–40

    Google Scholar 

  • Murai M, Ohnishi O (1996) Population genetics of cultivated common buckwheat, Fagopyrum esculentum Moench. 10. Diffusion routes revealed by RAPD markers. Genes Genet Syst 71:211–218

    CAS  PubMed  Google Scholar 

  • Nagano M, Aii J, Campbell C, Kawasaki S, Adachi T (2000) Genome size analysis of the genus Fagopyrum. Fagopyrum 17:35–39

    Google Scholar 

  • Nagatomo Y, Usui S, Ito T, Kato A, Shimosaka M, Taguchi G (2014) Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Plant J 80:437–448

    CAS  PubMed  Google Scholar 

  • Ohnishi O (1993) Population genetics of cultivated common buckwheat, Fagopyrum esculentum Moench. IX. Concluding remarks on worldwide survey of allozyme variability. Jpn J Genet 68:317–326

    CAS  Google Scholar 

  • Ohnishi O (1998) Search for the wild ancestor of buckwheat. I. Description of new Fagopyrum (Polygonaceae) species and their distribution in China and Himalayan hills. Fagopyrum 15:18–28

    Google Scholar 

  • Ohnishi O, Nagakubo T (1982) Population-genetics of cultivated common buckwheat, Fagopyrum esculentum 2. Frequency of dwarf mutants in Japanese populations. Jpn J Genet 57:641–650

    Google Scholar 

  • Ohnishi O, Ohta T (1987) Construction of a linkage map in common buckwheat, Fagopyrum esculentum Moench. Jpn J Genet 62:397–414

    Google Scholar 

  • Ohsako T, Chengyun L, Baiqing T (2017) Evolutionary relationship between a wild ancestor of common buckwheat Fagopyrum esculentum subsp. ancestrale and a self-compatible relative F. homotropicum based on microsatellite variability. Genet Resour Crop Evol 64:1595–1603

    Google Scholar 

  • Ohsawa R (2020) Current status and prospects of common buckwheat breeding in Japan. Breed Sci. https://doi.org/10.1270/jsbbs.19108

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JW, Kang DB, Kim CW, Ko SH, Yum HY, Kim KE, Hong CS (2000) Identification and characterization of the major allergens of buckwheat. Allergy 55:1035–1041

    CAS  PubMed  Google Scholar 

  • Sakamoto S, Matsui K, Oshima Y, Mitsuda N (2020) Efficient transient gene expression system using buckwheat hypocotyl protoplasts for large-scale experiments. Breed Sci. https://doi.org/10.1270/jsbbs.19082

    Article  PubMed  Google Scholar 

  • Samardzic JT, Milisavljevic MD, Brkljacic JM, Konstantinovic MM, Maksimovic VR (2004) Characterization and evolutionary relationship of methionine-rich legumin-like protein from buckwheat. Plant Physiol Biochem 42:157–163

    CAS  PubMed  Google Scholar 

  • Satoh R, Jensen-Jarolim E, Teshima R (2020) Understanding buckwheat allergies for the management of allergic reactions in humans and animals. Breed Sci. https://doi.org/10.1270/jsbbs.19051

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma KD, Boyes JW (1961) Modified incompatibility of buckwheat following irradiation. Can J Bot 39:1241–1246

    Google Scholar 

  • Sharma TR, Jana S (2002) Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting. Theor Appl Genet 105:306–312

    CAS  PubMed  Google Scholar 

  • Sheng MY, Wang LJ, Tian XJ (2013) Identification of the full set of Fagopyrum esculentum trisomics by heterochromatin banding analysis and rDNA physical mapping. Sci Hortic 155:15–23

    CAS  Google Scholar 

  • Sinkovič T, Bohanec B (1988) Chromosome counts and karyotype analysis in buckwheat (Fagopyrum esculentum Moench.). Fagopyrum 8:20–22

    Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  PubMed  Google Scholar 

  • Steadman KJ, Burgoon MS, Schuster RL, Lewis BA, Edwardson SE, Obendorf RL (2000) Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. J Agric Food Chem 48:2843–2847

    CAS  PubMed  Google Scholar 

  • Suvorova GN, Funatsuki H, Terami F (1999) Phylogenetic relationships among cultivars, species, and hybrids in the genus Fagopyrum Mill. assessed by RAPD analysis. Russ J Genet 35:1428–1432

    CAS  Google Scholar 

  • Suzuki T, Noda T, Morishita T, Ishiguro K, Otsuka S, Brunori A (2020) Present status and future perspectives of breeding for buckwheat quality. Breed Sci. https://doi.org/10.1270/jsbbs.19018

    Article  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. In: Annual review of plant biology. Annual Reviews, Palo Alto, pp 467–489

  • Takeshima R, Nishio T, Komatsu S, Kurauchi N, Matsui K (2019) Identification of a gene encoding polygalacturonase expressed specifically in short styles in distylous common buckwheat (Fagopyrum esculentum). Heredity 123:492–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomiyoshi M, Yasui Y, Ohsako T, Li CY, Ohnishi O (2012) Phylogenetic analysis of AGAMOUS sequences reveals the origin of the diploid and tetraploid forms of self-pollinating wild buckwheat, Fagopyrum homotropicum Ohnishi. Breed Sci 62:241–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno M, Yasui Y, Aii J, Matsui K, Sato S, Ota T (2016) Genetic analyses of the heteromorphic self-incompatibility(s) locus in buckwheat. In: Zhou M, Kreft I, Woo S-H, Chrungoo N, Wieslander G (eds) Molecular breeding and nutritional aspects of buckwheat. Academic Press, Cambridge, MA, pp 411–421

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucl Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Wang YJ, Scarth R, Campbell C (2005a) S-h and S-c-two complementary dominant genes that control self-compatibility in buckwheat. Crop Sci 45:1229–1234

    CAS  Google Scholar 

  • Wang YJ, Scarth R, Campbell GC (2005b) Inheritance of seed shattering in interspecific hybrids between Fagopyrum esculentum and F-homotropicum. Crop Sci 45:693–697

    Google Scholar 

  • Wijngaard HH, Arendt EK (2006) Buckwheat. Cereal Chem 83:391–401

    CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucl Acids Res 18:6531–6535

    CAS  PubMed  Google Scholar 

  • Woo SH, Adachi T, Jong SK, Campbell CG (1999) Inheritance of self-compatibility and flower morphology in an inter-specific buckwheat hybrid. Can J Plant Sci 79:483–490

    Google Scholar 

  • Yabe S, Hara T, Ueno M, Enoki H, Kimura T, Nishimura S, Yasui Y, Ohsawa R, Iwata H (2014) Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench). Breed Sci 64:291–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yabe S, Hara T, Ueno M, Enoki H, Kimura T, Nishimura S, Yasui Y, Ohsawa R, Iwata H (2018) Potential of genomic selection in mass selection breeding of an allogamous crop: an empirical study to increase yield of common buckwheat. Front Plant Sci 9:276

    PubMed  PubMed Central  Google Scholar 

  • Yasui Y (2020) History of the progressive development of genetic marker systems for common buckwheat. Breed Sci. https://doi.org/10.1270/jsbbs.19075

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasui Y, Ohnishi O (1996) Comparative study of rbcL gene sequences in Fagopyrum and related taxa. Genes Genet Syst 71:219–224

    CAS  PubMed  Google Scholar 

  • Yasui Y, Ohnishi O (1998a) Interspecific relationships in Fagopyrum (Polygonaceae) revealed by the nucleotide sequences of the rbcL and accD genes and their intergenic region. Am J Bot 85:1134–1142

    CAS  PubMed  Google Scholar 

  • Yasui Y, Ohnishi O (1998b) Phylogenetic relationships among Fagopyrum species revealed by the nucleotide sequences of the ITS region of the nuclear rRNA gene. Genes Genet Syst 73:201–210

    CAS  PubMed  Google Scholar 

  • Yasui Y, Wang YJ, Ohnishi O, Campbell CG (2004) Amplified fragment length polymorphism linkage analysis of common buckwheat (Fagopyrum esculentum) and its wild self-pollinated relative Fagopyrum homotropicum. Genome 47:345–351

    CAS  PubMed  Google Scholar 

  • Yasui Y, Mori M, Matsumoto D, Ohnishi O, Campbell CG, Ota T (2008) Construction of a BAC library for buckwheat genome research—an application to positional cloning of agriculturally valuable traits. Genes Genet Syst 83:393–401

    CAS  PubMed  Google Scholar 

  • Yasui Y, Mori M, Aii J, Abe T, Matsumoto D, Sato S, Hayashi Y, Ohnishi O, Ota T (2012) S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLoS ONE 7:e31264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui Y, Hirakawa H, Ueno M, Matsui K, Katsube-Tanaka T, Yang SJ, Aii J, Sato S, Mori M (2016) Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Res 23:215–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2014) Global transcriptome analysis of Al-induced genes in an Al-accumulating species, common buckwheat (Fagopyrum esculentum Moench.). Plant Cell Physiol 55:2077–2091

    CAS  PubMed  Google Scholar 

  • Zhang DF, Wu SW, An XL, Xie K, Dong ZY, Zhou Y, Xu LW, Fang W, Liu SS, Zhu TT, Li JP, Rao LQ, Zhao JR, Wan XY (2018) Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16:459–471

    CAS  PubMed  Google Scholar 

  • Zhou H, He M, Li J, Chen L, Huang ZF, Zheng SY, Zhu LY, Ni ED, Jiang DG, Zhao BR, Zhuang CX (2016) Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep 6:37395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zu FX, Lin RF, Li YQ, Liu DK (1984) Preliminary study on chromosome of various types of buckwheat. Chin J Cytobiol 3:130–131

    Google Scholar 

Download references

Acknowledgements

This research was supported by NARO and partly by JSPS KAKENHI Grant Numbers 18KK0172 and 18H02177.

Author information

Authors and Affiliations

Authors

Contributions

KM and YY wrote the main text and generated figures.

Corresponding author

Correspondence to Katsuhiro Matsui.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Albrecht E. Melchinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, K., Yasui, Y. Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum). Theor Appl Genet 133, 1641–1653 (2020). https://doi.org/10.1007/s00122-020-03572-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03572-6