Molecular genetics of leaf rust resistance in wheat and barley

Abstract

The demand for cereal grains as a main source of energy continues to increase due to the rapid increase in world population. The leaf rust diseases of cereals cause significant yield losses, posing challenges for global food security. The deployment of resistance genes has long been considered as the most effective and sustainable way to control cereal leaf rust diseases. While genetic resistance has reduced the impact of these diseases in agriculture, losses still occur due to the ability of the respective rust pathogens to change and render resistance genes ineffective plus the slow pace at which resistance genes are discovered and characterized. This article highlights novel recently developed strategies based on advances in genome sequencing that have accelerated gene isolation by overcoming the complexity of cereal genomes. The leaf rust resistance genes cloned so far from wheat and barley belong to various protein families, including nucleotide binding site/leucine-rich repeat receptors and transporters. We review recent studies that are beginning to reveal the defense mechanisms conferred by the leaf rust resistance genes identified to date in cereals and their roles in either pattern-triggered immunity or effector-triggered immunity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174

    CAS  PubMed  Google Scholar 

  2. Aime MC, McTaggart AR, Mondo SJ, Duplessis S (2017) Phylogenetics and phylogenomics of rust fungi. In: Townsend JP, Wang Z (eds) Advances in genetics. Elsevier, Amsterdam, pp 267–307

    Google Scholar 

  3. Anand A, Schmelz E, Muthukrishnan S (2003) Development of a lesion-mimic phenotype in a transgenic wheat line overexpressing genes for pathogenesis-related (PR) proteins is dependent on salicylic acid concentration. Mol Plant Microbe Interact 16:916–925

    CAS  PubMed  Google Scholar 

  4. Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP (2018) Disease resistance mechanisms in plants. Genes 9:339

    PubMed Central  Google Scholar 

  5. Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerström M (2006) Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 47:947–959

    CAS  PubMed  Google Scholar 

  6. Andolfo G, Jupe F, Witek K, Etherington G, Ercolano M, Jones J (2014) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:120

    PubMed  PubMed Central  Google Scholar 

  7. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, Ronen G, Sharpe AG, Pozniak C, Barad O, Baruch K, Keeble-Gagnère G, Mascher M, Ben-Zvi G, Josselin A-A, Himmelbach A, Balfourier F, Gutierrez-Gonzalez J, Hayden M, Koh C, Muehlbauer G, Pasam RK, Paux E, Rigault P, Tibbits J, Tiwari V, Spannagl M, Lang D, Gundlach H, Haberer G, Mayer KFX, Ormanbekova D, Prade V, Šimková H, Wicker T, Swarbreck D, Rimbert H, Felder M, Guilhot N, Kaithakottil G, Keilwagen J, Leroy P, Lux T, Twardziok S, Venturini L, Juhász A, Abrouk M, Fischer I, Uauy C, Borrill P, Ramirez-Gonzalez RH, Arnaud D, Chalabi S, Chalhoub B, Cory A, Datla R, Davey MW, Jacobs J, Robinson SJ, Steuernagel B, van Ex F, Wulff BBH, Benhamed M, Bendahmane A, Concia L, Latrasse D, Alaux M, Bartoš J, Bellec A, Berges H, Doležel J, Frenkel Z, Gill B, Korol A, Letellier T, Olsen O-A, Singh K, Valárik M, van Der Vossen E, Vautrin S, Weining S, Fahima T, Glikson V, Raats D, Číhalíková J, Toegelová H, Vrána J, Sourdille P, Darrier B, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Jones JDG, Witek K (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  8. Arnst B, Martens J, Wright G, Burnett P, Sanderson F (1979) Incidence, importance and virulence of Puccinia hordei on barley in New Zealand. Ann Appl Biol 92:185–190

    Google Scholar 

  9. Arora S, Steuernagel B, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Hatta MAM, Athiyannan N (2018) Resistance gene discovery and cloning by sequence capture and association genetics. bioRxiv:248146

  10. Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37:139–143

    CAS  PubMed  Google Scholar 

  11. Awika JM (2011) Major cereal grains production and use around the world. In: Awika JM, Piironen V, Bean S (eds) Advances in cereal science: implications to food processing and health promotion. ACS Publications, Washington, pp 1–13

    Google Scholar 

  12. Axtell MJ, Chisholm ST, Dahlbeck D, Staskawicz BJ (2003) Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease. Mol Microbiol 49:1537–1546

    CAS  PubMed  Google Scholar 

  13. Ballini E, Lauter N, Wise R (2013) Prospects for advancing defense to cereal rusts through genetical genomics. Front Plant Sci 4:117

    PubMed  PubMed Central  Google Scholar 

  14. Belser C, Istace B, Denis E, Dubarry M, Baurens F-C, Falentin C, Genete M, Berrabah W, Chèvre A-M, Delourme R, Deniot G, Denoeud F, Duffé P, Engelen S, Lemainque A, Manzanares-Dauleux M, Martin G, Morice J, Noel B, Vekemans X, D’Hont A, Rousseau-Gueutin M, Barbe V, Cruaud C, Wincker P, Aury J-M (2018) Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plants 4:879–887

    CAS  PubMed  Google Scholar 

  15. Bettgenhaeuser J, Krattinger SG (2019) Rapid gene cloning in cereals. Theor Appl Genet 132:699–711

    PubMed  Google Scholar 

  16. Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543:346–354

    CAS  PubMed  Google Scholar 

  17. Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Biol 46:189–214

    CAS  Google Scholar 

  18. Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM (2018) Regulation and evolution of NLR genes: a close interconnection for plant immunity. Int J Mol Sci 19:1662

    PubMed Central  Google Scholar 

  19. Bouwmeester K, de Sain M, Weide R, Gouget A, Klamer S, Canut H, Govers F (2011) The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathogens 7:e1001327

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328

    CAS  PubMed  Google Scholar 

  21. Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sun Y, Gill K, Steffenson B, Kleinhofs A (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105:14970

    CAS  PubMed  Google Scholar 

  22. Brunner S, Keller B, Feuillet C (2000) Molecular mapping of the Rph7. g leaf rust resistance gene in barley (Hordeum vulgare L.). Theor Appl Genet 101:783–788

    CAS  Google Scholar 

  23. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van Der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    PubMed  Google Scholar 

  24. Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytol 209:294–306

    CAS  PubMed  Google Scholar 

  25. Casey LW, Lavrencic P, Bentham AR, Cesari S, Ericsson DJ, Croll T, Turk D, Anderson PA, Mark AE, Dodds PN (2016) The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc Natl Acad Sci 113:12856–12861

    CAS  PubMed  Google Scholar 

  26. Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN (2014) A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front Plant Sci 5:606

    PubMed  PubMed Central  Google Scholar 

  27. Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN (2016) Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC–NLR proteins. Proc Natl Acad Sci 113:10204–10209

    CAS  PubMed  Google Scholar 

  28. Chen F, Dong W, Zhang J, Guo X, Chen J, Wang Z, Lin Z, Tang H, Zhang L (2018) The sequenced angiosperm genomes and genome databases. Front Plant Sci 9:418

    PubMed  PubMed Central  Google Scholar 

  29. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    CAS  PubMed  Google Scholar 

  30. Clifford B (1985) Barley leaf rust. In: Roelfs AP, Bushnell WR (eds) Diseases, distribution, epidemiology, and control. Elsevier, Amsterdam, pp 173–205

    Google Scholar 

  31. Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    CAS  PubMed  Google Scholar 

  32. Cotterill P, Rees R, Platz G, Dill-Macky R (1992) Effects of leaf rust on selected Australian barleys. Aust J Exp Agric 32:747–751

    Google Scholar 

  33. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    CAS  PubMed  Google Scholar 

  34. DebRoy S, Thilmony R, Kwack Y-B, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci 101:9927–9932

    CAS  PubMed  Google Scholar 

  35. Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278

    CAS  PubMed  Google Scholar 

  36. del Pozo O, Pedley KF, Martin GB (2004) MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082

    PubMed  PubMed Central  Google Scholar 

  37. dit Frey NF, Garcia AV, Bigeard J, Zaag R, Bueso E, Garmier M, Pateyron S, de Tauzia-Moreau M-L, Brunaud V, Balzergue S (2014) Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol 15:1–22

    Google Scholar 

  38. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    CAS  PubMed  Google Scholar 

  39. Dracatos PM, Bartos J, Elmansour H, Singh D, Karafiatova M, Zhang P, Steuernagel B, Svačina R, Cobbin J, Clark B, Hoxha S, Khatkar MS, Doležel J, Wulff BB, Park RF (2019) The coiled-coil NLR Rph1, confers leaf rust resistance in barley cultivar Sudan. Plant Physiol 179:1362

    CAS  PubMed  Google Scholar 

  40. Dyck P, Kerber E (1985) Resistance of the race-specific type. In: Roelfs AP, Bushnell WR (eds) Diseases, distribution, epidemiology, and control. Elsevier, Amsterdam, pp 469–500

    Google Scholar 

  41. Eichhorn H, Klinghammer M, Becht P, Tenhaken R (2006) Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J Exp Bot 57:2193–2201

    CAS  PubMed  Google Scholar 

  42. Elferink M, Schierhorn F (2016) Global demand for food is rising. Can we meet it? Harv Bus Rev 7:2016

    Google Scholar 

  43. FAOSTAT (2017) Production database—crops production. http://www.fao.org/faostat/en/#data/QC. Accessed 15 Nov 2019

  44. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci 100:15253–15258

    CAS  PubMed  Google Scholar 

  45. Flavell RB, Rimpau J, Smith DB (1977) Repeated sequence DNA relationships in four cereal genomes. Chromosoma 63:205–222

    CAS  Google Scholar 

  46. Forster BP, Thomas WT (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  47. Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide-or flagellin-induced resistance against Botrytis cinerea. Plant Physiol 157:804–814

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gan PHP, Rafiqi M, Hardham AR, Dodds PN (2010) Effectors of biotrophic fungal plant pathogens. Funct Plant Biol 37:913–918

    CAS  Google Scholar 

  49. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  50. Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  51. Golan T, Anikster Y, Moseman J, Wahl I (1978) A new virulent strain of Puccinia hordei. Euphytica 27:185–189

    Google Scholar 

  52. Gómez-Gómez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256

    PubMed  Google Scholar 

  53. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115

    CAS  PubMed  Google Scholar 

  54. Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:258

    PubMed  PubMed Central  Google Scholar 

  55. Griffey C, Das M, Baldwin R, Waldenmaier C (1994) Yield losses in winter barley resulting from a new race of Puccinia hordei in North America. Plant Dis 78:256–260

    Google Scholar 

  56. Gupta S, Vassos E, Sznajder B, Fox R, Khoo KHP, Loughman R, Chalmers KJ, Mather DE (2018) A locus on barley chromosome 5H affects adult plant resistance to powdery mildew. Mol Breed 38:103–103

    PubMed  PubMed Central  Google Scholar 

  57. Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65

    CAS  Google Scholar 

  58. Hancock JF (2004) Plant evolution and the origin of crop species, 2nd edn. CABI, Wallingford

    Google Scholar 

  59. He Y, Xu J, Wang X, He X, Wang Y, Zhou J, Zhang S, Meng X (2019) The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to Botrytis cinerea. Plant Cell 31:2206–2222

    CAS  PubMed  Google Scholar 

  60. Herrera-Foessel SA, Huerta-Espino J, Calvo-Salazar V, Lan CX, Singh RP (2014) Lr72 confers resistance to leaf rust in durum wheat cultivar Atil C2000. Plant Dis 98:631–635

    CAS  PubMed  Google Scholar 

  61. Hickey L, Lawson W, Platz G, Dieters M, Arief V, Germán S, Fletcher S, Park R, Singh D, Pereyra S, Franckowiak J (2011) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123:55–68

    CAS  PubMed  Google Scholar 

  62. Hickey LT, Lawson W, Platz GJ, Dieters M, Franckowiak J (2012) Origin of leaf rust adult plant resistance gene Rph20 in barley. Genome 55:396–399

    CAS  PubMed  Google Scholar 

  63. Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213:64

    Google Scholar 

  64. Huang W, Marth G (2008) EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res 18:1538–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961

    CAS  PubMed  Google Scholar 

  67. Huerta-Espino J, Singh R, Germán S, McCallum B, Park R, Chen W, Bhardwaj S, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160

    Google Scholar 

  68. Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:297

    PubMed  PubMed Central  Google Scholar 

  69. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–544

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jupe F, Chen X, Verweij W, Witek K, Jones JD, Hein I (2014) Genomic DNA library preparation for resistance gene enrichment and sequencing (RenSeq) in plants. In: Birch P, Jones JT, Bos JIB (eds) Plant–pathogen interactions: methods and protocols. Humana Press, Totowa, pp 291–303

    Google Scholar 

  72. Kachroo P, Kachroo A (2012) The roles of salicylic acid and jasmonic acid in plant immunity. In: Sessa G (ed) Molecular plant immunity. Wiley, New York, pp 55–79

    Google Scholar 

  73. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci 103:11086–11091

    CAS  PubMed  Google Scholar 

  74. Kamil W, Florian J, Agnieszka IW, David B, Matthew DC, Jonathan DGJ (2016) Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nat Biotechnol 34:656–660

    Google Scholar 

  75. Kang J, Hwang J-U, Lee M, Kim Y-Y, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355

    CAS  PubMed  Google Scholar 

  76. Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon L, Feldblyum T, Nierman W, Benito M, Lin X, Town CD, Venter J, Fraser CM, Tabata S, Nakamura Y, Kaneko T, Sato S, Asamizu E, Kato T, Kotani H, Sasamoto S, Ecker J, Theologis A, Federspiel N, Palm CJ, Osborne B, Shinn P, Conway AB, Vysotskaia V, Dewar K, Conn L, Lenz C, Kim CJ, Hansen N, Liu S, Buehler E, Altafi H, Sakano H, Dunn P, Lam B, Pham PK, Chao Q, Nguyen M, Yu G, Chen HM, Southwick A, Lee J, Miranda M, Toriumi M, Davis RW, Wambutt R, Murphy G, Dusterhoft A, Stiekema W, Pohl T, Entian K, Terryn N, Volckaert G, Salanoubat M, Choisne N, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Artiguenave F, Weissenbach J, Quetier F, Wilson R, de La Bastide M, Sekhon M, Huang E, Spiegel L, Gnoj L, Pepin K, Murray J, Johnson D, Habermann K, Dedhia N, Parnell L, Preston R, Hillier L, Chen E, Marra M, Martienssen R, McCombie W, Mayer K, White O, Bevan M, Lemcke K, Creasy T, Bielke C, Haas B, Haase D, Maiti R, Rudd S, Peterson J, Schoof H, Frishman D, Morgenstern B (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    CAS  Google Scholar 

  77. Kavanagh PJ, Singh D, Bansal UK, Park RF (2017) Inheritance and characterization of the new and rare gene Rph25 conferring seedling resistance in Hordeum vulgare against Puccinia hordei. Plant Breeding 136:908–912

    CAS  Google Scholar 

  78. Kendrick B (2017) The fifth kingdom. Hackett Publishing, Indianapolis

    Google Scholar 

  79. Kim MG, Da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL, Mackey D (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–759

    CAS  PubMed  Google Scholar 

  80. Kohorn BD, Kohorn SL, Todorova T, Baptiste G, Stansky K, McCullough M (2012) A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. Mol Plant 5:841–851

    CAS  PubMed  Google Scholar 

  81. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424

    CAS  PubMed  Google Scholar 

  82. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kutschera A, Dawid C, Gisch N, Schmid C, Raasch L, Gerster T, Schäffer M, Smakowska-Luzan E, Belkhadir Y, Vlot AC, Chandler CE, Schellenberger R, Schwudke D, Ernst RK, Dorey S, Hückelhoven R, Hofmann T, Ranf S (2019) Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in plants. Science 364:178

    CAS  PubMed  Google Scholar 

  84. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48:251–275

    CAS  Google Scholar 

  85. Lee H-A, Yeom S-I (2015) Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Brief Funct Genom 14:233–242

    CAS  Google Scholar 

  86. Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    CAS  PubMed  Google Scholar 

  87. Li C, Chen G, Mishina K, Yamaji N, Ma JF, Yukuhiro F, Tagiri A, Liu C, Pourkheirandish M, Anwar N, Ohta M, Zhao P, Lundqvist U, Li X, Komatsuda T (2017) A GDSL-motif esterase/acyltransferase/lipase is responsible for leaf water retention in barley. Plant Direct 1:1–12

    Google Scholar 

  88. Long DL, Leonard KJ, Hughes ME (2000) Virulence of Puccinia triticina on wheat in the United States from 1996 to 1998. Plant Dis 84:1334–1341

    CAS  PubMed  Google Scholar 

  89. Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B (2009) Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J 60:1043

    CAS  PubMed  Google Scholar 

  90. Luke R, Jordi C, Arnis D, David FM, William TBT, Malcolm M, Katrin M, Craig S, John F, Nicola B, Patrick MH, Udda L, Jerome DF, Timothy JC, Gary JM, Robbie W (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169

    Google Scholar 

  91. Luo X, Xu N, Huang J, Gao F, Zou H, Boudsocq M, Coaker G, Liu J (2017) A lectin receptor-like kinase mediates pattern-triggered salicylic acid signaling. Plant Physiol 174:2501–2514

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    CAS  PubMed  Google Scholar 

  93. Maekawa T, Cheng W, Spiridon LN, Töller A, Lukasik E, Saijo Y, Liu P, Shen Q-H, Micluta MA, Somssich IE (2011) Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9:187–199

    CAS  PubMed  Google Scholar 

  94. Mago R, Till B, Periyannan S, Yu G, Wulff BBH, Lagudah E (2017) Generation of loss-of-function mutants for wheat rust disease resistance gene cloning. In: Periyannan S (ed) Wheat rust diseases: methods and protocols. Springer, New York, pp 199–205

    Google Scholar 

  95. Marcel T, Varshney R, Barbieri M, Jafary H, Kock M, Graner A, Niks R (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    CAS  PubMed  Google Scholar 

  96. Martinez F, Niks R, Singh R, Rubiales D (2001) Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust. Hereditas 135:111–114

    CAS  PubMed  Google Scholar 

  97. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang QS, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatrian M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao SJ, Chapman B, Dai F, Han Y, Li H, Li X, Lin CY, McCooke JK, Tan C, Wang PH, Wang SB, Yin SY, Zhou GF, Poland JA, Bellgard MI, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Lagridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang GP, Braumann I, Spannagl M, Li CD, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:426–433

    Google Scholar 

  98. Matsumoto T, Wu J, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  99. Mayer KFX, Waugh R, Brown JWS, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711

    CAS  PubMed  Google Scholar 

  100. Mccallum B, Hiebert C, Thomas J, Henriquez M (2017) Fusarium head blight resistance is enhanced by the wheat leaf rust resistance gene Lr34. Can J Plant Pathol 39:566–566

    Google Scholar 

  101. Melech-Bonfil S, Sessa G (2010) Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J 64:379–391

    CAS  PubMed  Google Scholar 

  102. Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    CAS  PubMed  Google Scholar 

  103. Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    CAS  PubMed  Google Scholar 

  104. Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Milne RJ, Dibley KE, Schnippenkoetter W, Mascher M, Lui ACW, Wang L, Lo C, Ashton AR, Ryan PR, Lagudah ES (2019) The wheat gene from the sugar transport protein 13 family confers multipathogen resistance in barley. Plant Physiol 179:1285

    CAS  PubMed  Google Scholar 

  106. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci 104:19613–19618

    CAS  PubMed  Google Scholar 

  107. Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    CAS  PubMed  Google Scholar 

  108. Munoz-Amatriain M, Moscou MJ, Bhat PR, Svensson JT, Bartos J, Suchankova P, Simkova H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao SM, Cistue L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Valles MP, Wulff BBH, Muehlbauer GJ, Dolezel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249

    CAS  Google Scholar 

  109. Muradov A, Petrasovits L, Davidson A, Scott K (1993) A cDNA clone for a pathogenesis-related protein 1 from barley. Plant Mol Biol 23:439–442

    CAS  PubMed  Google Scholar 

  110. Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Google Scholar 

  111. Murray G, Brennan J (2010) Estimating disease losses to the Australian barley industry. Australas Plant Pathol 39:85–96

    Google Scholar 

  112. Niu Z, Jiang A, Abu Hammad W, Oladzadabbasabadi A, Xu SS, Mergoum M, Elias EM (2014) Review of doubled haploid production in durum and common wheat through wheat × maize hybridization. Plant Breed 133:313–320

    CAS  Google Scholar 

  113. Nuccio M, Chen X, Conville J, Zhou A, Liu X (2015) Plant Trait Gene Expression Cassette Design. In: Azhakanandam K, Silverstone A, Daniell H, Davey MR (eds) Recent advancements in gene expression and enabling technologies in crop plants. Springer, New York, pp 41–77

    Google Scholar 

  114. Nuernberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335–345

    CAS  Google Scholar 

  115. Oh C-S, Martin GB (2011) Effector-triggered immunity mediated by the Pto kinase. Trends Plant Sci 16:132–140

    CAS  PubMed  Google Scholar 

  116. Padder B (2014) Plant disease resistance genes: from perception to signal transduction. In: Hakeem KR, Rehman RU, Tahir I (eds) Plant signaling: understanding the molecular crosstalk. Springer, Berlin, pp 345–354

    Google Scholar 

  117. Padmanabhan M, Cournoyer P, Dinesh-Kumar SP (2009) The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities. Blackwell Publishing Ltd, Oxford, pp 191–198

    Google Scholar 

  118. Park R (2003) Pathogenic specialization and pathotype distribution of Puccinia hordei in Australia, 1992 to 2001. Plant Dis 87:1311–1316

    CAS  PubMed  Google Scholar 

  119. Park RF (2008) Breeding cereals for rust resistance in Australia. Blackwell Publishing Ltd, Oxford, pp 591–602

    Google Scholar 

  120. Park R, McIntosh R (1994) Adult plant resistances to Puccinia recondita f. sp. tritici in wheat. N Z J Crop Hortic Sci 22:151–158

    Google Scholar 

  121. Park RF, Bariana HS, Wellings CR, Wallwork H (2002) Detection and occurrence of a new pathotype of Puccinia triticina with virulence for Lr24 in Australia. Aust J Agric Res 53:1069

    CAS  Google Scholar 

  122. Park R, Mohler V, Nazari K, Singh D (2014) Characterisation and mapping of gene Lr73 conferring seedling resistance to Puccinia triticina in common wheat. Theor Appl Genet 127:2041–2049

    CAS  PubMed  Google Scholar 

  123. Park RF, Golegaonkar PG, Derevnina L, Sandhu KS, Karaoglu H, Elmansour HM, Dracatos PM, Singh D (2015) Leaf rust of cultivated barley: pathology and control. Annu Rev Phytopathol 53:565–589

    CAS  PubMed  Google Scholar 

  124. Parlevliet J, Ommeren A (1975) Partial resistance of barley to leaf rust, Puccinia hordei. II. Relationship between field trials, micro plot tests and latent period. Euphytica 24:293–303

    Google Scholar 

  125. Parlevliet J, van de Beek J, Pieters R (1981) Presence in Marocco of brown rust, Puccinia hordei, with a wide range of virulence to barley. Cereal Rusts Bull 9:3–8

    Google Scholar 

  126. Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8:541–547

    CAS  PubMed  Google Scholar 

  127. Periyannan S (2018) Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases. New Pathol 219:45–51

    CAS  Google Scholar 

  128. Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539

    CAS  PubMed  Google Scholar 

  129. Pretorius ZA, Pakendorf KW, Marais GF, Prins R, Komen JS (2007) Challenges for sustainable cereal rust control in South Africa. Aust J Agric Res 58:593–601

    Google Scholar 

  130. Proels RK, Hückelhoven R (2014) Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol Plant Pathol 15:858–864

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Qi D, Innes RW (2013) Recent advances in plant NLR structure, function, localization, and signaling. Front Immunol 4:348

    PubMed  PubMed Central  Google Scholar 

  132. Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215

    CAS  Google Scholar 

  133. Qureshi N, Bariana H, Kumran V, Muruga S, Forrest K, Hayden M, Bansal U (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet 131:1091–1098

    CAS  PubMed  Google Scholar 

  134. Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    CAS  PubMed  Google Scholar 

  135. Rathore JS, Ghosh C (2018) Pathogen-associated molecular patterns and their perception in plants. In: Singh A, Singh IK (eds) Molecular aspects of plant-pathogen interaction. Springer, Singapore, pp 79–113

    Google Scholar 

  136. Roelfs AP, Bushnell WR (1985) The cereal rusts. Academic Press, Orlando, FL

    Google Scholar 

  137. Saini RG, Kaur M, Singh B, Sharma S, Nanda GS, Nayar SK, Gupta AK, Nagarajan S (2002) Genes Lr48 and Lr49 for hypersensitive adult plant leaf rust resistance in wheat (Triticum aestivum L.). Euphytica 124:365–370

    CAS  Google Scholar 

  138. Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger S, Wicker T, Doležel J, Keller B, Wulff B (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221–221

    PubMed  PubMed Central  Google Scholar 

  139. Sarris PF, Cevik V, Dagdas G, Jones JDG, Krasileva KV (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14:1–18

    Google Scholar 

  140. Scherrer B, Isidore E, Klein P, Kim J-s, Bellec A, Chalhoub B, Keller B, Feuillet C (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17:361–374

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14:54–61

    CAS  PubMed  Google Scholar 

  142. Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    CAS  Google Scholar 

  143. Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  144. Singh D, Park RF, McIntosh RA (2007) Characterisation of wheat leaf rust resistance gene Lr34 in Australian wheats using components of resistance and the linked molecular marker csLV34. Aust J Agric Res 58:1106

    CAS  Google Scholar 

  145. Singh D, Mohler V, Park R (2013) Discovery, characterisation and mapping of wheat leaf rust resistance gene Lr71. Euphytica 190:131–136

    CAS  Google Scholar 

  146. Singh D, Dracatos P, Derevnina L, Zhou M, Park RF (2015) Rph23: a new designated additive adult plant resistance gene to leaf rust in barley on chromosome 7H. Plant Breed 134:62–69

    CAS  Google Scholar 

  147. Singh D, Dracatos P, Loughman R, Park R (2017) Genetic mapping of resistance to Puccinia hordei in three barley doubled-haploid populations. Euphytica 213:1–10

    CAS  Google Scholar 

  148. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    CAS  PubMed  Google Scholar 

  149. Sonnewald S, Priller JP, Schuster J, Glickmann E, Hajirezaei M-R, Siebig S, Mudgett MB, Sonnewald U (2012) Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLoS ONE 7:1–16

    Google Scholar 

  150. Steffenson B, Jin Y, Griffey C (1993) Pathotypes of Puccinia hordei with virulence for the barley leaf rust resistance gene Rph7 in the United States. Plant Dis 77:867–869

    Google Scholar 

  151. Stein N, Muehlbauer GJ (2018) The barley genome. Springer, Cham

    Google Scholar 

  152. Stein M, Dittgen J, Sanchez-Rodriguez C, Hou B-H, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, Lagudah ES, Wulff BBH (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652–655

    CAS  PubMed  Google Scholar 

  154. Sysoeva MI, Markovskaya EF, Shibaeva TG (2010) Plants under continuous light: a review. Plant Stress 4:5–17

    Google Scholar 

  155. Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R (2013) Mut Map-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    CAS  PubMed  Google Scholar 

  156. Tameling WIL, Joosten MHAJ (2007) The diverse roles of NB-LRR proteins in plants. Physiol Mol Plant Pathol 71:126–134

    CAS  Google Scholar 

  157. Tanaka K, Choi J, Cao Y, Liang Y, Qi Y, Qiu J, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Purinergic Signal 10:712–713

    Google Scholar 

  158. Thind AK, Wicker T, Šimková H, Fossati D, Moullet O, Brabant C, Vrána J, Doležel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793–796

    CAS  PubMed  Google Scholar 

  159. van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009

    PubMed  PubMed Central  Google Scholar 

  160. Venugopal SC, Jeong R-D, Mandal MK, Zhu S, Chandra-Shekara A, Xia Y, Hersh M, Stromberg AJ, Navarre D, Kachroo AJPG (2009) Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet 5:1–18

    Google Scholar 

  161. Vidhyasekaran P (2015) Plant hormone signaling systems in plant innate immunity. Springer, Dordrecht

    Google Scholar 

  162. Vlot AC, Dempsey DMA, Klessig DF (2009) salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    CAS  PubMed  Google Scholar 

  163. Wang M, Beck CR, English AC, Meng Q, Buhay C, Han Y, Doddapaneni HV, Yu F, Boerwinkle E, Lupski JR (2015) PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-associated chromosomal structural variations. BMC Genom 16:214

    Google Scholar 

  164. Wang C, Tang S, Zhan Q, Hou Q, Zhao Y, Zhao Q, Feng Q, Zhou C, Lyu D, Cui L (2019a) Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nat Commun 10:2982

    PubMed  PubMed Central  Google Scholar 

  165. Wang Y, Subedi S, de Vries H, Doornenbal P, Vels A, Hensel G, Kumlehn J, Johnston PA, Qi X, Blilou I (2019b) Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nat Plants 5:1129–1135

    CAS  PubMed  Google Scholar 

  166. Wu C-H, Krasileva KV, Banfield MJ, Terauchi R, Kamoun S (2015) The “sensor domains” of plant NLR proteins: more than decoys? Front Plant Sci 6:134

    PubMed  PubMed Central  Google Scholar 

  167. Yang Q, Zhang D, Xu M (2012) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny F. J Integr Plant Biol 54:228–237

    PubMed  Google Scholar 

  168. Yin K, Qiu J-L (2019) Genome editing for plant disease resistance: applications and perspectives. Philos Trans R Soc Lond B Biol Sci 374:1–8

    Google Scholar 

  169. Yu X, Kong HY, Meiyalaghan V, Casonato S, Chng S, Jones EE, Butler RC, Pickering R, Johnston PA (2018) Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum. Theor Appl Genet 131:2567–2580

    CAS  PubMed  Google Scholar 

  170. Ziems LA, Hickey LT, Platz GJ, Franckowiak JD, Dracatos PM, Singh D, Park RF (2017) Characterization of Rph24: a gene conferring adult plant resistance to Puccinia hordei in barley. Phytopathology 107:834–841

    CAS  PubMed  Google Scholar 

  171. Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351

    CAS  PubMed  Google Scholar 

  172. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Grains Research and Development Corporation and Judith and David Coffey and family to HD, DS, SP, and RP and the financial support from the Australia Awards Scholarship to HD. This work is partly supported by the School of Agriculture and Food at the University of Melbourne to MP.

Author information

Affiliations

Authors

Contributions

MP and RP conceived the review. HD and MP wrote the review. All authors jointly designed, drafted and finalized this editorial.

Corresponding authors

Correspondence to Robert F. Park or Mohammad Pourkheirandish.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Albrecht E. Melchinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dinh, H.X., Singh, D., Periyannan, S. et al. Molecular genetics of leaf rust resistance in wheat and barley. Theor Appl Genet 133, 2035–2050 (2020). https://doi.org/10.1007/s00122-020-03570-8

Download citation