Skip to main content

Advertisement

Log in

Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We discussed the most recent efforts in wheat functional genomics to discover new genes and their deployment in breeding with special emphasis on advances in Asian countries.

Abstract

Wheat research community is making significant progress to bridge genotype-to-phenotype gap and then applying this knowledge in genetic improvement. The advances in genomics and phenomics have intrigued wheat researchers in Asia to make best use of this knowledge in gene and trait discovery. These advancements include, but not limited to, map-based gene cloning, translational genomics, gene mapping, association genetics, gene editing and genomic selection. We reviewed more than 57 homeologous genes discovered underpinning important traits and multiple strategies used for their discovery. Further, the complementary advancements in wheat phenomics and analytical approaches to understand the genetics of wheat adaptability, resilience to climate extremes and resistance to pest and diseases were discussed. The challenge to build a gold standard reference genome sequence of bread wheat is now achieved and several de novo reference sequences from the cultivars representing different gene pools will be available soon. New pan-genome sequencing resources of wheat will strengthen the foundation required for accelerated gene discovery and provide more opportunities to practice the knowledge-based breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    PubMed  CAS  Google Scholar 

  • Balfourier F, Bouchet S, Robert S, De Oliveira R, Rimbert H, Kitt J, Choulet F, Paux E (2019) Worldwide phylogeography and history of wheat genetic diversity. Sci Adv 5:eaav0536

    PubMed  PubMed Central  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Google Scholar 

  • Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543:346–354

    PubMed  CAS  Google Scholar 

  • Blais F (2004) Review of 20 years of range sensor development. J Electron Imaging 13:231–243

    Google Scholar 

  • Browning BL, Yu Z (2009) Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am J Hum Genet 85:847–861

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y et al (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci 108:7727–7732

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao L, Hayashi K, Tokui M, Mori M, Miura H, Onishi K (2016) Detection of QTLs for traits associated with pre-harvest sprouting resistance in bread wheat (Triticum aestivum L.). Breed Sci 66:260–270

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2006) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784

    PubMed  Google Scholar 

  • Chang JZ, Zhang JA, Mao XG, Li A, Jia JZ, Jing RL (2013) Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat. Planta 237:1495–1508

    PubMed  CAS  Google Scholar 

  • Chen H, Jiao C, Wang Y, Wang Y, Tian C, Yu H, Wang J, Wang X, Lu F, Fu X, Xue Y, Jiang W, Ling H, Lu H, Jiao Y (2019a) Comparative population genomics of bread wheat (Triticum aestivum) reveals its cultivation and breeding history in China. https://www.biorxiv.org/519587

  • Chen J, Zhang F, Zhao C, Lv G, Sun C, Pan Y, Guo X, Chen F (2019b) Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J. https://doi.org/10.1111/pbi.13126

    Article  PubMed  PubMed Central  Google Scholar 

  • Chono M, Matsunaka H, Seki M, Fujita M, Kiribuchi-Otobe C, Oda S et al (2013) Isolation of a wheat (Triticum aestivum L.) mutant in ABA8′-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition. Breed Sci 63:104–115

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chono M, Matsunaka H, Seki M, Fujita M, Kiribuchi-Otobe C, Oda S et al (2015) Molecular and genealogical analysis of grain dormancy in Japanese wheat varieties, with specific focus on MOTHER OF FT AND TFL1 on chromosome 3A. Breed Sci 65:103–109

    PubMed  PubMed Central  CAS  Google Scholar 

  • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–379

    Google Scholar 

  • Dong CH, Ma ZY, Xia XC, Zhang LP, He ZH (2012) Allelic variation at the Tazds-A1 locus on wheat chromosome 2a and development of a functional marker in common wheat. J Integr Agric 11:1067–1074

    CAS  Google Scholar 

  • Dong LL, Wang FM, Liu T, Dong ZY, Li AL, Jing RL et al (2014) Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Mol Breed 34:937–947

    CAS  Google Scholar 

  • Dong Y, Zhang Y, Xiao Y, Yan J, Liu J, Wen W et al (2016) Cloning of TaSST genes associated with water soluble carbohydrate content in bread wheat stems and development of a functional marker. Theor Appl Genet 129:1061–1070

    PubMed  CAS  Google Scholar 

  • Driscoll CJ, Jensen N (1964) Chromosomes associated with waxlessness, awnedness and time of maturity of common wheat. Can J Genet Cytol 6:324–333

    Google Scholar 

  • Elbashir AAE, Gorafi YSA, Tahir ISA, Kim J, Tsujimoto H (2017) Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits. Breed Sci 67:248–256

    PubMed  PubMed Central  Google Scholar 

  • FAO (2018). http://www.fao.org/faostat/en/#home

  • Finno CJ, Aleman M, Higgins RJ, Madigan JE, Bannasch DL (2014) Risk of false positive genetic associations in complex traits with underlying population structure: a case study. Vet J 202:543–549

    PubMed  PubMed Central  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    PubMed  CAS  Google Scholar 

  • Fu L, Xiao Y, Yan J, Liu J, Wen W, Zhang Y, Xia X, He Z (2019) Characterization of TaCOMT genes associated with stem lignin content in common wheat and development of a gene-specific marker. J Integr Agric 18:939–947

    CAS  Google Scholar 

  • Gago J, Douthe C, Coopman R, Gallego P, Ribas-Carbo M, Flexas J et al (2015) UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag 153:9–19

    Google Scholar 

  • Genty B, Meyer S (1995) Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. Funct Plant Biol 22:277–284

    Google Scholar 

  • Gorafi YSA, Kim JS, Elbashir AAE, Tsujimoto H (2018) A population of wheat multiple synthetic derivatives: an effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement. Theor Appl Genet 131:1615–1626

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Y, Sun J, Zhang G, Wang Y, Kong F, Zhao Y, Li S (2013) Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1a in wheat. Field Crops Res 154:119–125

    Google Scholar 

  • Guo W, Fukatsu T, Ninomiya S (2015) Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods 11:7

    PubMed  PubMed Central  Google Scholar 

  • Halloran GM, Boydell CW (1967) Wheat chromosomes with genes for vernalization response. Can J Genet Cytol 9:632–639

    Google Scholar 

  • Hanif M, Gao FM, Liu J, Wen W, Zhang Y, Rasheed A et al (2015) TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed 36:1–8

    Google Scholar 

  • Hao C, Wang Y, Chao S, Li T, Liu H, Wang L, Zhang X (2017) The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep 7:41247

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hao Z, Geng M, Hao Y, Zhang Y, Zhang L, Wen S, Wang R, Liu G (2019) Screening for differential expression of genes for resistance to Sitodiplosis mosellana in bread wheat via BSR-seq analysis. Theor Appl Genet. https://doi.org/10.1007/s00122-019-03419-9

    Article  PubMed  Google Scholar 

  • Hassan MA, Yang M, Rasheed A, Jin X, Xia X, Xiao Y, He Z (2018a) Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sens 10:809

    Google Scholar 

  • Hassan MA, Yang M, Rasheed A, Yang G, Reynolds M, Xia X, Xiao Y, He Z (2018b) A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci 282:95–103

    PubMed  Google Scholar 

  • Hassan MA, Yang M, Fu L, Rasheed A, Zheng B, Xia X, Xiao Y, He Z (2019) Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods 15:37

    PubMed  PubMed Central  Google Scholar 

  • He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP, Xia XC (2007) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115:47–58

    PubMed  CAS  Google Scholar 

  • He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    PubMed  CAS  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018a) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    PubMed  CAS  Google Scholar 

  • He Y, Zhang X, Zhang Y, Ahmad D, Wu L, Jiang P, Ma H (2018b) Molecular characterization and expression of PFT, an FHB resistance gene at the Fhb1 QTL in wheat. Phytopathology 108:730–736

    PubMed  CAS  Google Scholar 

  • He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P et al (2019) Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat Genet 51:896–904

    PubMed  CAS  Google Scholar 

  • Himi E, Maekawa M, Miura H, Noda K (2011) Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor Appl Genet 122:1561–1576

    PubMed  CAS  Google Scholar 

  • Hirao K, Nishijima R, Sakaguchi K, Takumi S (2015) Fine mapping of Hch1, the causal D-genome gene for hybrid chlorosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genes Genet Syst 90:283–291

    PubMed  CAS  Google Scholar 

  • Hou J, Jiang Q, Hao C, Wang Y, Zhang H, Zhang X (2014) Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol 164:1918–1929

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hou J, Li T, Wang Y, Hao C, Liu H, Zhang X (2017) ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Plant Biotechnol J 15:1533–1543

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hu MJ, Zhang HP, Cao JJ, Zhu XF, Wang SX, Jiang H et al (2016) Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed 36:1–11

    Google Scholar 

  • Hu J, Li J, Wu P, Li Y, Qiu D, Qu Y et al (2019) Development of SNP, KASP, and SSR Markers by BSR-Seq technology for saturation of genetic linkage map and efficient detection of wheat powdery mildew resistance gene Pm61. Int J Mol Sci 20:E750

    PubMed  Google Scholar 

  • Iehisa JCM, Shimizu A, Sato K, Nasuda S, Takumi S (2012) Discovery of high-confidence single nucleotide polymorphisms from large-scale de novo analysis of leaf transcripts of Aegilops tauschii, a wild wheat progenitor. DNA Res 19:487–497

    PubMed  PubMed Central  CAS  Google Scholar 

  • Iehisa JCM, Matsuura T, Mori IC, Takumi S (2014a) Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings. J Plant Physiol 171:25–34

    PubMed  CAS  Google Scholar 

  • Iehisa JCM, Ohno R, Kimura T, Enoki H, Nishimura S, Okamoto Y et al (2014b) A high-density genetic map with array-based markers facilitates structural and quantitative traits locus analyses of the common wheat genome. DNA Res 21:555–567

    PubMed  PubMed Central  CAS  Google Scholar 

  • Iehisa JCM, Shimizu A, Sato K, Nishijima R, Sakaguchi K, Matsuda R et al (2014c) Genome-wide marker development for the wheat D genome based on single nucleotide polymorphisms identified from transcripts in the wild wheat progenitor Aegilops tauschii. Theor Appl Genet 127:261–271

    PubMed  CAS  Google Scholar 

  • Inokuma T, Vrinten P, Shimabata T, Sunohara A, Ito H, Saito M et al (2016) Using the hexaploid nature of wheat to create variability in starch characteristics. J Agric Food Chem 64:941–947

    PubMed  CAS  Google Scholar 

  • Ishikawa G, Nakamura K, Ito H, Saito M, Sato M, Jinno H et al (2014) Association mapping and validation of QTLs for flour yield in the soft winter wheat variety Kitahonami. PLoS ONE 9:e111337

    PubMed  PubMed Central  Google Scholar 

  • Ishikawa G, Saito M, Tanaka T, Katayose Y, Kanamori H, Kurita K, Nakamura T (2018) An efficient approach for the development of genome-specific markers in allohexaploid wheat (Triticum aestivum L.) and its application in the construction of high-density linkage maps of the D genome. DNA Res 25:317–326

    PubMed Central  CAS  Google Scholar 

  • Ito M, Maruyama-Funatsuki W, Ikeda TM, Nishio Z, Nagasawa K, Tabiki T (2015) Dough properties and bread-making quality-related characteristics of Yumechikara near-isogenic wheat lines carrying different Glu-B3 alleles. Breed Sci 65:241–248

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jahnke S, Menzel MI, Van Dusschoten D, Roeb GW, Bühler J, Minwuyelet S et al (2009) Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644

    CAS  PubMed  Google Scholar 

  • Jatayev S, Kurishbayev A, Zotova L, Khasanova G, Serikbay D, Zhubatkanov A et al (2017) Advantages of Amplifluor-like SNP markers over KASP in plant genotyping. BMC Plant Biol 17:254

    PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genom 11:49–61

    CAS  Google Scholar 

  • Jiang Y, Jiang Q, Hao C, Hou J, Wang L, Zhang H et al (2015) A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor Appl Genet 128:131–143

    PubMed  CAS  Google Scholar 

  • Jiang H, Zhao L-X, Chen X-J, Cao J-J, Wu Z-Y, Liu K et al (2018) A novel 33-bp insertion in the promoter of TaMFT-3A is associated with pre-harvest sprouting resistance in common wheat. Mol Breed 38:69

    Google Scholar 

  • Juliana P, Poland J, Huerta-Espino J, Shrestha S, Crossa J et al (2019) Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat Genet 51:1530–1539. https://doi.org/10.1038/s41588-019-0496-6

    Article  PubMed  CAS  Google Scholar 

  • Kajimura T, Murai K, Takumi S (2011) Distinct genetic regulation of flowering time and grain-filling period based on empirical study of D-genome diversity in synthetic hexaploid wheat lines. Breed Sci 61:130–141

    Google Scholar 

  • Khalid M, Afzal F, Gul A, Amir R, Subhani A, Ahmed Z et al (2019) Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Front Plant Sci 10:717

    PubMed  PubMed Central  Google Scholar 

  • Kirchgessner N, Liebisch F, Yu K, Pfeifer J, Friedli M, Hund A, Walter A (2017) The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct Plant Biol 44:154–168

    Google Scholar 

  • Kobayashi F, Takumi S, Handa H (2010) Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-related gene expression in common wheat. Theor Appl Genet 121:629–641

    PubMed  CAS  Google Scholar 

  • Kobayashi F, Tanaka T, Kanamori H, Wu J, Katayose Y, Handa H (2016) Characterization of a mini core collection of Japanese wheat varieties using single-nucleotide polymorphisms generated by genotyping-by-sequencing. Breed Sci 66:213–225

    PubMed  PubMed Central  CAS  Google Scholar 

  • Koyama K, Okumura Y, Okamoto E, Nishijima R, Takumi S (2018) Natural variation in photoperiodic flowering pathway and identification of photoperiod-insensitive accessions in wild wheat, Aegilops tauschii. Euphytica 214:3

    Google Scholar 

  • Law CN (1966) The location of genetic factors affecting a quantitative character in wheat. Genetics 53:487–498

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Yang B (2017) Translational genomics of grain size regulation in wheat. Theor Appl Genet 130:1765–1771

    PubMed  CAS  Google Scholar 

  • Li XP, Zhao XQ, He X, Zhao GY, Li B, Liu DC et al (2011) Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use- and yield-related traits in bread wheat. New Phytol 189:449–458

    PubMed  CAS  Google Scholar 

  • Li X, Zhu C, Wang J, Yu J (2012) Computer simulation in plant breeding. Adv Agron 116:219–264

    Google Scholar 

  • Li H, Singh RP, Braun H-J, Pfeiffer WH, Wang J (2013) Doubled haploids versus conventional breeding in CIMMYT wheat breeding programs. Crop Sci 53:74–83

    Google Scholar 

  • Li B, Li Q, Mao X, Li A, Wang J, Chang X et al (2016a) Two novel AP2/EREBP transcription factor genes TaPARG have pleiotropic functions on plant architecture and yield-related traits in common wheat. Front Plant Sci 7:1191

    PubMed  PubMed Central  Google Scholar 

  • Li B, Liu D, Li Q, Mao X, Li A, Wang J, Chang X, Jing R (2016b) Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa. J Exp Bot 67:4155–4167

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Shi X, Zheng F, Li C, Wu D, Bai G, Gao D, Wu J, Li T (2016c) A novel nitrogen-dependent gene associates with the lesion mimic trait in wheat. Theor Appl Genet 129:2075–2084

    PubMed  CAS  Google Scholar 

  • Li M, Li B, Guo G, Chen Y, Xie J, Lu P et al (2018) Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J 6:236–243

    Google Scholar 

  • Li N, Xu R, Duan P, Li Y (2018b) Control of grain size in rice. Plant Reprod 31:237–251

    PubMed  CAS  Google Scholar 

  • Li G, Zhou J, Jia H, Gao Z, Fan M et al (2019) Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet 51:1106–1112

    PubMed  CAS  Google Scholar 

  • Liu HJ, Yan J (2019) Crop genome-wide association study: a harvest of biological relevance. Plant J 97:8–18

    PubMed  CAS  Google Scholar 

  • Liu YN, He ZH, Appels R, Xia XC (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10

    PubMed  CAS  Google Scholar 

  • Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X (2016) Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.). Theor Appl Genet 129:2179–2190

    PubMed  CAS  Google Scholar 

  • Liu J, He Z, Rasheed A, Wen W, Yan J, Zhang P et al (2017) Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol 17:220

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Li T, Wang Y, Zheng J, Li H, Hao C, Zhang X (2019a) TaZIM-A1 negatively regulates flowering time in common wheat (Triticum aestivum L.). J Integr Plant Biol 61:359–376

    PubMed  CAS  Google Scholar 

  • Liu J, Rasheed A, He Z, Imtiaz M, Arif A, Mahmood T et al (2019b) Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theor Appl Genet 132:2509–2523

    PubMed  CAS  Google Scholar 

  • Liu K, Cao J, Yu K, Liu X, Gao Y, Chen Q et al (2019c) Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol 181:179–194

    PubMed  PubMed Central  CAS  Google Scholar 

  • Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2016) An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor Appl Genet 130:597–607

    PubMed  Google Scholar 

  • Ma DY, Yan J, He ZH, Wu L, Xia XC (2012) Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed 29:43–52

    CAS  Google Scholar 

  • Ma L, Tian L, Hao C, Wang Y, Chen X, Zhang XY (2016) TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J 14:1269–1280

    PubMed  CAS  Google Scholar 

  • Manickavelu A, Jighly A, Ban T (2014) Molecular evaluation of orphan Afghan common wheat (Triticum aestivum L.) landraces collected by Dr. Kihara using single nucleotide polymorphic markers. BMC Plant Biol 14:320

    PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Nasuda S (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet 109:1710–1717

    PubMed  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2007) Natural variation for triploid F1 hybrid formation in allohexaploid wheat speciation. Theor Appl Genet 115:509–518

    PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simková H, Liu H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    PubMed  PubMed Central  CAS  Google Scholar 

  • McIntosh R (1973) A catalogue of gene symbols for wheat. In: Missouri C (ed) Proceedings of 4th international wheat genetics symposium

  • Michikawa A, Yoshida K, Okada M, Sato K, Takumi S (2019) Genome-wide polymorphisms from RNA sequencing assembly of leaf transcripts facilitate phylogenetic analysis and molecular marker development in wild einkorn wheat. Mol Genet Genom 294:1327–1341. https://doi.org/10.1007/s00438-019-01581-9

    Article  CAS  Google Scholar 

  • Miki Y, Yoshida K, Mizuno N, Nasuda S, Sato K, Takumi S (2019) Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops. DNA Res 26:171–182

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mizuno N, Hosogi N, Park P, Takumi S (2010) Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii Coss. PLoS ONE 5:e11326

    PubMed  PubMed Central  Google Scholar 

  • Mizuno N, Shitsukawa N, Hosogi N, Park P, Takumi S (2011) Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. Plant J 68:114–128

    PubMed  CAS  Google Scholar 

  • Mizuno N, Nitta M, Sato K, Nasuda S (2012) A wheat homologue of PHYTOCLOCK 1 is a candidate gene conferring early heading phenotypes to einkorn wheat. Genes Genet Syst 87:357–367

    PubMed  CAS  Google Scholar 

  • Mizuno N, Kinoshita M, Kinoshita S, Nishida H, Fujita M, Kato K et al (2016) Loss-of-function mutations in three homoeologous PHYTOCLOCK 1 genes in common wheat are associated with the extra-early flowering phenotype. PLoS ONE 11:e0165618

    PubMed  PubMed Central  Google Scholar 

  • Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet 110:1315–1323

    PubMed  CAS  Google Scholar 

  • Nakamura S (2018) Grain dormancy genes responsible for preventing pre-harvest sprouting in barley and wheat. Breed Sci 68:295–304

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura T, Shimbata T, Vrinten P, Saito M, Yonemaru J, Seto Y, Yasuda H, Takahama M (2006) Sweet wheat. Genes Genet Syst 81:361–365

    PubMed  CAS  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T et al (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nakano H, Mizuno N, Tosa Y, Yoshida K, Park P, Takumi S (2015) Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii. PLoS ONE 10:e0121583

    PubMed  PubMed Central  Google Scholar 

  • Nguyen AT, Iehisa JCM, Kajimura T, Murai K, Takumi S (2013) Identification of quantitative trait loci for flowering-related traits in the D genome of synthetic hexaploid wheat lines. Euphytica 192:401–412

    CAS  Google Scholar 

  • Ni F, Qi J, Hao Q, Lyu B, Luo MC, Wang Y et al (2017) Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat Commun 8:15121

    PubMed  PubMed Central  Google Scholar 

  • Nishijima R, Yoshida K, Motoi Y, Sato K, Takumi S (2016) Genome-wide identification of novel genetic markers from RNA sequencing assembly of diverse Aegilops tauschii accessions. Mol Genet Genom 291:1681–1694

    CAS  Google Scholar 

  • Nishijima R, Okamoto Y, Hatano H, Takumi S (2017) Quantitative trait locus analysis for spikelet shape-related traits in wild wheat progenitor Aegilops tauschii: implications for intraspecific diversification and subspecies differentiation. PLoS ONE 12:e0173210

    PubMed  PubMed Central  Google Scholar 

  • Nishijima R, Yoshida K, Sakaguchi K, Yoshimura S, Sato K, Takumi S (2018) RNA sequencing-based bulked segregant analysis facilitates efficient D-genome marker development for a specific chromosomal region of synthetic hexaploid wheat. Int J Mol Sci 19:3749

    PubMed Central  Google Scholar 

  • Okada M, Ikeda TM, Yoshida K, Takumi S (2018a) Effect of the U genome on grain hardness in nascent synthetic hexaploids derived from interspecific hybrids between durum wheat and Aegilops umbellulata. J Cereal Sci 83:153–161

    CAS  Google Scholar 

  • Okada M, Yoshida K, Nishijima R, Michikawa A, Motoi Y, Sato K, Takumi S (2018b) RNA-seq analysis reveals considerable genetic diversity and provides genetic marker saturating all chromosomes in the diploid wild wheat relative Aegilops umbellulata. BMC Plant Biol 18:271

    PubMed  PubMed Central  CAS  Google Scholar 

  • Okamoto Y, Nguyen AT, Yoshioka M, Iehisa JCM, Takumi S (2013) Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breed Sci 63:423–429

    PubMed  PubMed Central  Google Scholar 

  • Onishi K, Yamane M, Yamaji N, Tokui M, Kanamori H, Wu J et al (2017) Sequence differences in the seed dormancy gene Qsd1 among various wheat genomes. BMC Genom 18:497

    Google Scholar 

  • Pont C, Leroy T, Seidel M, Tondelli A, Duchemin W et al (2019) Tracing the ancestry of modern bread wheats. Nat Genet 51:905–911

    PubMed  CAS  Google Scholar 

  • Qin L, Hao CY, Hou J, Wang YQ, Li T, Wang LF, Ma ZQ, Zhang XY (2014) Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. BMC Plant Biol 14:107

    PubMed  PubMed Central  Google Scholar 

  • Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Bery S et al (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotech J 13:613–624

    CAS  Google Scholar 

  • Rasheed A, Xia X (2019) From markers to genome-based breeding in wheat. Theor Appl Genet 132:767–784

    PubMed  CAS  Google Scholar 

  • Rasheed A, Wen W, Gao FM, Zhai S, Jin H, Liu JD et al (2016) Development and validation of KASP assays for functional genes underpinning key economic traits in wheat. Theor Appl Genet 129:1843–1860

    PubMed  CAS  Google Scholar 

  • Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z (2017) crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    PubMed  CAS  Google Scholar 

  • Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K et al (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48:1576–1580

    PubMed  CAS  Google Scholar 

  • Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J et al (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 Genes Genom Genet 6:2799–2808

    Google Scholar 

  • Sajjad M, Ma X, Habibullah KS, Shoaib M, Song Y, Yang W et al (2017) TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.). BMC Plant Biol 17:164

    PubMed  PubMed Central  Google Scholar 

  • Sakaguchi K, Nishijima R, Iehisa JCM, Takumi S (2016) Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genetica 144:523–533

    PubMed  Google Scholar 

  • Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt JG et al (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schmundt D, Stitt M, Jähne B, Schurr U (1998) Quantitative analysis of the local rates of growth of dicot leaves at a high temporal and spatial resolution, using image sequence analysis. Plant J 16:505–514

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Univ Missouri Agric Exp Stn Bull 572:1–58

    Google Scholar 

  • Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: 5th international wheat genetics symposium, pp 389–407

  • Sehgal D, Mondal S, Guzman C, Garcia Barrios G, Franco C, Singh R, Dreisigacker S (2019) Validation of candidate gene-based markers and identification of novel loci for thousand-grain weight in spring bread wheat. Front Plant Sci 10:1189

    PubMed  PubMed Central  Google Scholar 

  • Shavrukov Y, Suchecki R, Eliby S, Abugalieva A, Kenebayev S, Langridge P (2014) Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan. BMC Plant Biol 14:258

    PubMed  PubMed Central  Google Scholar 

  • Shepherd K (1968) Chromosomal control of endosperm proteins in wheat and rye. In: Proceedings of 3rd international wheat genetics symposium, Australian Academy of Science, pp 86–96

  • Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J et al (2017) A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Front Plant Sci 8:1412

    PubMed  PubMed Central  Google Scholar 

  • Shimbata T, Ai Y, Fujita M, Inokuma T, Vrinten P, Sunohara A et al (2012) Effects of homoeologous wheat Starch Synthase IIa genes on starch properties. J Agric Food Chem 60:12004–12010

    PubMed  CAS  Google Scholar 

  • Su ZQ, Hao CY, Wang LF, Dong YC, Zhang XY (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    PubMed  CAS  Google Scholar 

  • Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H et al (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51:1099–1105

    PubMed  CAS  Google Scholar 

  • Sun C, Zhang F, Yan X, Zhang X, Dong Z, Cui D, Chen F (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J 15:953–969

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D et al (2019) A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J 97:887–900

    PubMed  CAS  Google Scholar 

  • Tabiki T, Nishio Z, Ito M, Yamauchi H, Takata K, Kuwabara T et al (2011) A new extra-strong hard red winter wheat variety: ‘Yumechikara’. Res Bull NARO Hokkaido Agric Res Cent 195:1–12

    Google Scholar 

  • Takamatsu K, Iehisa JCM, Nishijima R, Takumi S (2015) Comparison of gene expression profiles and response to zinc chloride among inter- and intraspecific hybrids with growth abnormalities in wheat and its relatives. Plant Mol Biol 88:487–502

    PubMed  CAS  Google Scholar 

  • Takumi S, Naka Y, Morihiro H, Matsuoka Y (2009) Expression of morphological and flowering time variation through allopolyploidization: an empirical study with 27 wheat synthetics and their parental Aegilops tauschii accessions. Plant Breed 128:585–590

    Google Scholar 

  • Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783

    PubMed  CAS  Google Scholar 

  • Tian S, Mao X, Zhang H, Chen S, Zhai C, Yang S, Jing R (2013) Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot 64:2063–2080

    PubMed  PubMed Central  CAS  Google Scholar 

  • Torada A, Koike M, Ikeuchi S, Tsutsui I (2008) Mapping of a major locus controlling seed dormancy using backcrossed progenies in wheat (Triticum aestivum L.). Genome 51:426–432

    PubMed  CAS  Google Scholar 

  • Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J et al (2016) A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase. Curr Biol 26:782–787

    PubMed  CAS  Google Scholar 

  • Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ur Rehman S, Wang J, Chang X, Zhang X, Mao X, Jing R (2019) A wheat protein kinase gene TaSnRK2.9-5A associated with yield contributing traits. Theor Appl Genet 132:907–919

    PubMed  CAS  Google Scholar 

  • Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford MJ (2017) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Funct Plant Biol 44:143–153

    Google Scholar 

  • Walter A, Schurr U (2005) Dynamics of leaf and root growth: endogenous control versus environmental impact. Ann Bot 95:891–900

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Van Ginkel M, Podlich D, Ye G, Trethowan R, Pfeiffer W et al (2003) Comparison of two breeding strategies by computer simulation. Crop Sci 43:1764–1773

    Google Scholar 

  • Wang J, Eagles H, Trethowan R, Van Ginkel M (2005) Using computer simulation of the selection process and known gene information to assist in parental selection in wheat quality breeding. Aust J Agric Res 56:465–473

    Google Scholar 

  • Wang J, Chapman SC, Bonnett DG, Rebetzke GJ (2009a) Simultaneous selection of major and minor genes: use of QTL to increase selection efficiency of coleoptile length of wheat (Triticum aestivum L.). Theor Appl Genet 119:65–74

    PubMed  CAS  Google Scholar 

  • Wang J, Singh RP, Braun HJ, Pfeiffer WH (2009b) Investigating the efficiency of the single backcrossing breeding strategy through computer simulation. Theor Appl Genet 118:683–694

    PubMed  Google Scholar 

  • Wang J, Wen W, Hanif M, Xia X, Wang H, Liu S et al (2016) TaELF3-1DL, a homolog of ELF3, is associated with heading date in bread wheat. Mol Breed 36:161

    Google Scholar 

  • Wang Y, Xie J, Zhang H, Guo B, Ning S, Chen Y et al (2017a) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130:2191–2201

    PubMed  CAS  Google Scholar 

  • Wang Y, Yu H, Tian C, Sajjad M, Gao C, Tong Y, Wang X, Jiao Y (2017b) Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol 175:746

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Wang R, Mao X, Li L, Chang X, Zhang X, Jing R (2018a) TaARF4 genes are linked to root growth and plant height in wheat. Ann Bot. https://doi.org/10.1093/aob/mcy218

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang H, Xie J, Guo B, Chen Y, Zhang H et al (2018b) Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J 6:91–98

    Google Scholar 

  • Wang H, Wang S, Chang X, Hao C, Sun D, Jing R (2019a) Identification of TaPPH-7A haplotypes and development of a molecular marker associated with important agronomic traits in common wheat. BMC Plant Biol 19:296

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang R, Song W, Han L, Liu X, Sun X et al (2019b) Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV). Sci Rep 9:3458

    PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, Kobayashi M et al (2017) High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front Plant Sci 8:421–421

    PubMed  PubMed Central  Google Scholar 

  • Wei J, Geng H, Zhang Y, Liu J, Wen W, Zhang Y, Xia X, Chen X, He Z (2015) Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1 on wheat chromosome 3AL. Theor Appl Genet 128:2067–2076

    PubMed  CAS  Google Scholar 

  • Wen W, Guo X, Wang Y, Zhao C, Liao W (2017) Constructing a three-dimensional resource database of plants using measured in situ morphological data. Appl Eng Agric 33:747–756

    Google Scholar 

  • White JW, Conley MM (2013) A flexible, low-cost cart for proximal sensing. Crop Sci 53:1646–1649

    Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B et al (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1707–1718

    Google Scholar 

  • Worland AJ (1996) The influence of flowering time gene on environmental adaptability in European wheats. Euphytica 89:49–57

    Google Scholar 

  • Wu J, Zeng Q, Wang Q, Liu S, Yu S, Mu J et al (2018a) SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor Appl Genet 131:1481–1496

    PubMed  CAS  Google Scholar 

  • Wu P, Xie J, Hu J, Qiu D, Liu Z, Li J et al (2018b) Development of molecular markers linked to powdery mildew resistance gene Pm4b by combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat. Front Plant Sci 9:95

    PubMed  PubMed Central  Google Scholar 

  • Würschum T, Langer SM, Longin CFH (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128:865–874

    PubMed  Google Scholar 

  • Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL (2017) A modern Green Revolution gene for reduced height in wheat. Plant J 92:892–903

    PubMed  Google Scholar 

  • Xia C, Zhang L, Zou C, Gu Y, Duan J, Zhao G et al (2017) A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun 8:15407

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J et al (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878

    PubMed  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Google Scholar 

  • Yan X, Zhao L, Ren Y, Dong Z, Cui D, Chen F (2019) Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Sci Rep 9:2702

    PubMed  PubMed Central  Google Scholar 

  • Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H et al (2017) Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front Plant Sci 8:1111

    PubMed  PubMed Central  Google Scholar 

  • Yao J, Zhao D, Chen X, Zhang Y, Wang J (2018) Use of genomic selection and breeding simulation in cross prediction for improvement of yield and quality in wheat (Triticum aestivum L.). Crop J 6:353–365

    Google Scholar 

  • Yao H, Xie Q, Xue S, Luo J, Lu J, Kong Z et al (2019) HL2 on chromosome 7D of wheat (Triticum aestivum L.) regulates both head length and spikelet number. Theor Appl Genet 132:1789–1797

    PubMed  CAS  Google Scholar 

  • Yokota H, Iehisa JCM, Nishijima R, Nitta M, Takenaka S, Nasuda S, Takumi S (2016) Variation in abscisic acid responsiveness at the early seedling stage is related to line differences in seed dormancy and in expression of genes involved in abscisic acid responses in common wheat. J Cereal Sci 71:167–176

    CAS  Google Scholar 

  • Yongjun Z, Shenghui Y, Chunjiang Z, Liping C, Lan Y, Yu T (2017) Modelling operation parameters of UAV on spray effects at different growth stages of corns. Int J Agric Biol Eng 10:57–66

    Google Scholar 

  • Yue J, Yang G, Li C, Li Z, Wang Y, Feng H, Xu B (2017) Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens 9:708

    Google Scholar 

  • Zhai S, He Z, Wen W, Jin H, Liu J, Zhang Y, Liu Z, Xia X (2016a) Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. Theor Appl Genet 129:377–394

    PubMed  CAS  Google Scholar 

  • Zhai S, Li G, Sun Y, Song J, Li J, Song G, Li Y, Ling H, He Z, Xia X (2016b) Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. BMC Plant Biol 16:228

    PubMed  PubMed Central  Google Scholar 

  • Zhang G, Li YM, Zhang Y, Dong YL, Wang XJ, Wee GR et al (2010) Cloning and characterization of a pathogenesis-related protein gene TaPR10 from wheat induced by stripe rust pathogen. Agric Sci China 9:549–556

    Google Scholar 

  • Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ (2012) TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol 195:574–584

    PubMed  CAS  Google Scholar 

  • Zhang YJ, Liu JD, Xia XC, He ZH (2014a) TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed 34:1097–1107

    CAS  Google Scholar 

  • Zhang YJ, Miao XL, Xia XC, He ZH (2014b) Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theor Appl Genet 127:855–866

    PubMed  CAS  Google Scholar 

  • Zhang B, Liu X, Xu W, Chang JZ, Li A, Mao XG, Zhang XY, Jing RL (2015a) Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci Rep 5:12211

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Guo X, Du J, Zhao C (2015b) Review on characterization of maize phenotypic diversity: from genome and genotyping to phenomics and high-throughput phenotyping. Res Crops 16:351

    Google Scholar 

  • Zhang W, Zhao G, Gao LF, Kong XY, Guo Z, Wu B, Jia JZ (2016) Functional studies of heading date-related gene TaPRR73, a paralog of Ppd1 in common wheat. Front Plant Sci 7:772

    PubMed  PubMed Central  Google Scholar 

  • Zhang B, Xu W, Liu X, Mao X, Li A, Wang J, Chang X, Zhang X, Jing R (2017a) Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP-box genes governing yield-related traits in hexaploid wheat. Plant Physiol 174:1177

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang P, He Z, Tian X, Gao F, Xu D, Liu J et al (2017b) Cloning of TaTPP-6AL1 associated with grain weight in bread wheat and development of functional marker. Mol Breed 37:78

    Google Scholar 

  • Zhang Y, Xia X, He Z (2017c) The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theor Appl Genet 130:81–89

    PubMed  Google Scholar 

  • Zhang X, Liu G, Zhang L, Xia C, Zhao T, Jia J, Liu X, Kong X (2018) Fine mapping of a novel heading date gene, TaHdm605, in hexaploid wheat. Front Plant Sci 9:772

    Google Scholar 

  • Zhao G, Zou C, Li K, Wang K, Li T, Gao L et al (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 3:946–955

    PubMed  CAS  Google Scholar 

  • Zhao C, Zhang Y, Du J, Guo X, Wen W, Gu S, Wang J, Fan J (2019a) Crop phenomics: current status and perspectives. Front Plant Sci 10:714

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wang Z, Liu H, Zhao J, Li T, Hou J, Zhang X, Hao C (2019b) Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century. BMC Plant Biol 19:5

    PubMed  PubMed Central  Google Scholar 

  • Zheng J, Liu H, Wang Y, Wang L, Chang X, Jing RL, Hao C, Zhang XY (2014) TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). J Exp Bot 65:5351–5365

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong S, Toubia-Rahme H, Steffenson BJ, Smith KPJP (2006) Molecular mapping and marker-assisted selection of genes for septoria speckled leaf blotch resistance in barley. Phytopathology 96:993–999

    PubMed  CAS  Google Scholar 

  • Zhou C, Liang D, Yang X, Xu B, Yang G (2018a) Recognition of wheat spike from field based phenotype platform using multi-sensor fusion and improved maximum entropy segmentation algorithms. Remote Sens 10:246

    Google Scholar 

  • Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, Wang R et al (2018b) Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnol J 16:280–291

    PubMed  CAS  Google Scholar 

  • Zhu XF, Zhang HP, Hu MJ, Wu ZY, Jiang H, Cao JJ, Xia XC, Ma CX, Chang C (2016) Cloning and characterization of Tabas1-B1 gene associated with flag leaf chlorophyll content and thousand-grain weight and development of a gene-specific marker in wheat. Mol Breed 36:142

    Google Scholar 

  • Zhu Z, Xu D, Cheng S, Gao C, Xia X, Hao Y, He Z (2018) Characterization of fusarium head blight resistance gene Fhb1 and its putative ancestor in chinese wheat germplasm. Acta Agron Sin 44:473–482

    Google Scholar 

  • Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aids for Scientific Research (B) No. 16H04862 and for Scientific Research on Innovative Areas No. 19H04863 from MEXT to ST. We acknowledge Natural National Science Foundation (NSFC), China for Research Fund of International Young Scientists award (31950410563) and Pak-China (PSF-NSFC) Joint Research Grant. We apologize that due to the space limitations, we could not cite several citations.

Author information

Authors and Affiliations

Authors

Contributions

AR, ZH and TM conceived the idea. AR, AM, ST and MI outlined the manuscript. AR, ST, MAH and MA wrote the manuscript. MI, AM, ZH and TM reviewed and edited the manuscript.

Corresponding author

Correspondence to Awais Rasheed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Xianchun Xia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, A., Takumi, S., Hassan, M.A. et al. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. Theor Appl Genet 133, 1503–1520 (2020). https://doi.org/10.1007/s00122-019-03523-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03523-w

Navigation