Skip to main content

QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping

Abstract

Key message

We identified four chromosome regions harboring QTL for grain yield-related traits, and breeder-friendly KASP markers were developed and validated for marker-assisted selection.

Abstract

Identification of major stable quantitative trait loci (QTL) for grain yield-related traits is important for yield potential improvement in wheat breeding. In the present study, 266 recombinant inbred lines (RILs) derived from a cross between Zhongmai 871 (ZM871) and its sister line Zhongmai 895 (ZM895) were evaluated for thousand grain weight (TGW), grain length (GL), grain width (GW), and grain number per spike (GNS) in 10 environments and for grain filling rate in six environments. Sixty RILs, with 30 higher and 30 lower TGW, respectively, were genotyped using the wheat 660 K SNP array for preliminary QTL mapping. Four genetic regions on chromosomes 1AL, 2BS, 3AL, and 5B were identified to have a significant effect on TGW-related traits. A set of Kompetitive Allele Specific PCR markers were converted from the SNP markers on the above target chromosomes and used to genotype all 266 RILs. The mapping results confirmed the QTL named Qgw.caas-1AL, Qgl.caas-3AL, Qtgw.caas-5B, and Qgl.caas-5BS on the targeted chromosomes, explaining 5.0–20.6%, 5.7–15.7%, 5.5–17.3%, and 12.5–20.5% of the phenotypic variation for GW, GL, TGW, and GL, respectively. A novel major QTL for GNS on chromosome 5BS, explaining 5.2–15.2% of the phenotypic variation, was identified across eight environments. These QTL were further validated using BC1F4 populations derived from backcrosses ZM871/ZM895//ZM871 (121 lines) and ZM871/ZM895//ZM895 (175 lines) and 186 advanced breeding lines. Collectively, selective genotyping is a simple, economic, and effective approach for rapid QTL mapping and can be generally applied to genetic mapping studies for important agronomic traits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ali ML, Baenziger PS, Ajlouni ZA, Campbell BT, Gill KS, Eskridge KM, Mujeeb-Kazi A, Dweikat I (2011) Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Sci 51:553–566. https://doi.org/10.2135/cropsci2010.06.0359

    Article  Google Scholar 

  2. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733. https://doi.org/10.1007/s00122-007-0603-4

    CAS  Article  PubMed  Google Scholar 

  3. Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271. https://doi.org/10.1007/s00122-012-1831-9

    Article  PubMed  Google Scholar 

  4. Bhusal N, Sarial AK, Sharma P, Sareen S (2017) Mapping QTLs for grain yield components in wheat under heat stress. PLoS ONE 12:e0189594. https://doi.org/10.1371/journal.pone.0189594

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Brinton J, Uauy C (2018) A reductionist approach to dissecting grain weight and yield in wheat. J Integr Plant Biol 61:337–358. https://doi.org/10.1111/jipb.12741

    Article  Google Scholar 

  6. Cabral AL, Jordan MC, Larson G, Somers DJ, Humphreys DG, McCartney CA (2018) Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’. PLoS ONE 13(1):e0190681. https://doi.org/10.1371/journal.pone.0190681

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195. https://doi.org/10.2135/cropsci1999.0011183X003900040039x

    CAS  Article  Google Scholar 

  8. Chang C, Lu J, Zhang HP, Ma CX, Sun GL (2015) Copy number variation of cytokinin oxidase gene Tackx4 associated with grain weight and chlorophyll content of flag leaf in common wheat. PLoS ONE 10:e0145970. https://doi.org/10.1371/journal.pone.0145970

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Charmet G, Robert N, Branlard G, Linossier L, Martre P, Triboï E (2005) Genetic analysis of dry matter and nitrogen accumulation and protein composition in wheat kernels. Theor Appl Genet 111:540–550. https://doi.org/10.1007/s00122-005-2045-1

    CAS  Article  PubMed  Google Scholar 

  10. Chastain TG, Ward KJ, Wysocki DJ (1995) Stand estblishment response of soft white winter wheat to seedbed residue and seed size. Crop Sci 35:213–218. https://doi.org/10.2135/cropsci1995.0011183X003500010040x

    Article  Google Scholar 

  11. Cheng RR, Kong ZX, Zhang LW, Xie Q, Jia HY, Yu D, Huang YL, Ma ZQ (2017) Mapping QTLs controlling kernel dimensions in a wheat intervarietal RIL mapping population. Theor Appl Genet 130:1405–1414. https://doi.org/10.1007/s00122-017-2896-2

    Article  PubMed  Google Scholar 

  12. Cui F, Zhao CH, Ding AM, Li J, Wang L, Li XF, Bao YG, Li JM, Wang HG (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127:659–675. https://doi.org/10.1007/s00122-013-2249-8

    Article  PubMed  Google Scholar 

  13. Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao GY, Li JM (2017) Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 7:3788. https://doi.org/10.1038/s41598-017-04028-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Dong Y, Liu JD, Zhang Y, Geng HW, Rasheed A, Xiao YG, Cao SH, Fu LP, Yang J, Wen WE, Zhang Y, Jing RL, Xia XC, He ZH (2016) Genome-wide association of stem water soluble carbohydrates in bread wheat. PLoS ONE 11(11):e0164293. https://doi.org/10.1371/journal.pone.0164293

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  16. Farkhari M, Krivanek A, Xu YB, Rong Th, Naghavi MR, Samadi BY, Yl Lu (2013) Root-lodging resistance in maize as an example for high-throughput genetic mapping via single nucleotide polymorphism-based selective genotyping. Plant Breed 132:90–98. https://doi.org/10.1111/pbr.12010

    CAS  Article  Google Scholar 

  17. Fischer RA (2008) The importance of grain or kernel number in wheat: a reply to Sinclair and Jamieson. Field Crop Res 105:15–21. https://doi.org/10.1016/j.fcr.2007.04.002

    Article  Google Scholar 

  18. Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:85–98. https://doi.org/10.2135/cropsci2009.10.0564

    Article  Google Scholar 

  19. Gallais A, Moreau L, Charcosset A (2007) Detection of marker-QTL associations by studying change in marker frequencies with selection. Theor Appl Genet 114:669–681. https://doi.org/10.1007/s00122-006-0467-z

    CAS  Article  PubMed  Google Scholar 

  20. Gao FM, Wen WE, Liu JD, Rasheed A, Yin GH, Xia XC, Wu XX, He ZH (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1099. https://doi.org/10.3389/fpls.2015.01099

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gao FM, Ma DY, Yin GH, Rasheed A, Dong Y, Xiao YG, Wu XX, Xia XC, He ZH (2017) Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of Southern Yellow and Huai valley winter wheat zone since 1950. Crop Sci 57:760–773. https://doi.org/10.2135/cropsci2016.05.0362

    CAS  Article  Google Scholar 

  22. Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056. https://doi.org/10.1105/tpc.110.074153

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Gimhani DR, Gregorio GB, Kottearachchi NS, Samarasinghe WLG (2016) SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa). Mol Genet Genomics 291:2081–2099. https://doi.org/10.1007/s00438-016-1241-9

    CAS  Article  PubMed  Google Scholar 

  24. Griffiths S, Wingen L, Pietragalla J, Garcia G, Hasan A, Miralles D, Calderini DF, Ankleshwaria JB, Waite ML, Simmonds J, Snape J, Reynolds M (2015) Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE 10:e0118847. https://doi.org/10.1371/journal.pone.0118847

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Guan PF, Lu LH, Jia LJ, Kabir MR, Zhang JB, Lan TY, Zhao Y, Xin MM, Hu ZR, Yao YY, Ni ZF, Sun QX, Peng HR (2018) Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci 9:529. https://doi.org/10.3389/fpls.2018.00529

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hanif M, Gao FM, Liu JD, Wen WE, Zhang YJ, Rasheed A, Xia XC, He ZH, Cao SH (2015) TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed 36:1. https://doi.org/10.1007/s11032-015-0425-z

    CAS  Article  Google Scholar 

  27. Holland JB (2006) Estimating genotypic correlations and their standard errors using Multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci 46:642–654. https://doi.org/10.2135/cropsci2005.0191

    Article  Google Scholar 

  28. Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  29. Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389. https://doi.org/10.1007/s00122-002-1179-7

    CAS  Article  PubMed  Google Scholar 

  30. Huang XQ, Kempf H, Ganal MW, Roder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943. https://doi.org/10.1007/s00122-004-1708-7

    CAS  Article  Google Scholar 

  31. Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497. https://doi.org/10.1038/ng.352

    CAS  Article  PubMed  Google Scholar 

  32. IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. https://doi.org/10.1126/science.aar7191

    CAS  Article  Google Scholar 

  33. Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg LH (2019) Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica 215:103. https://doi.org/10.1007/s10681-019-2426-1

    CAS  Article  Google Scholar 

  34. Jia HY, Wan HS, Yang SH, Zhang ZZ, Kong ZX, Xue SL, Zhang LX, Ma ZQ (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139. https://doi.org/10.1007/s00122-013-2123-8

    CAS  Article  PubMed  Google Scholar 

  35. Jiang QY, Hou J, Hao CY, Wang LF, Ge HM, Dong YS, Zhang XY (2011) The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics 11:49–61. https://doi.org/10.1007/s10142-010-0188-x

    CAS  Article  PubMed  Google Scholar 

  36. Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144. https://doi.org/10.1007/s12298-018-0552-1

    CAS  Article  Google Scholar 

  37. Kuzay S, Xu YF, Zhang JL, Katz A, Pearce S, Su ZQ, Fraser M, Anderson JA, Brown-Guedira G, DeWitt N, Haugrud AP, Faris JD, Akhunov E, Bai GH, Dubcovsky J (2019) Identifcation of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet 132:2689–2705. https://doi.org/10.1007/s00122-019-03382-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Langridge P (2013) Wheat genomics and the ambitious targets for future wheat production. Genome 56:545–547. https://doi.org/10.1139/gen-2013-0149

    Article  PubMed  Google Scholar 

  39. Li XM, Xia XC, Xiao YG, He ZH, Wang DS, Trethowan R, Wang HJ, Chen XM (2015) QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Crop Pasture Sci 66:660–670. https://doi.org/10.1071/cp14236

    CAS  Article  Google Scholar 

  40. Li FJ, Wen WE, He ZH, Liu JD, Jin H, Cao SH, Geng HW, Yan J, Zhang PZ, Wan YG, Xia XC (2018) Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theor Appl Genet 131:1903–1924. https://doi.org/10.1007/s00122-018-3122-6

    Article  PubMed  Google Scholar 

  41. Liu Y, He Z, Appels R, Xia X (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10. https://doi.org/10.1007/s00122-012-1829-3

    CAS  Article  PubMed  Google Scholar 

  42. Liu K, Sun XX, Ning TY, Duan XX, Wang QL, Liu TT, An YL, Guan X, Tian JC, Chen JS (2018) Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study. Theor Appl Genet 131:1073–1090. https://doi.org/10.1007/s00122-018-3059-9

    CAS  Article  PubMed  Google Scholar 

  43. Liu J, Wu BH, Singh RP, Velu G (2019) QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J Cereal Sci 88:57–64. https://doi.org/10.1016/j.jcs.2019.05.008

    CAS  Article  Google Scholar 

  44. Lizana XC, Riegel R, Gomez LD, Herrera J, Isla A, McQueen-Mason SJ, Calderini DF (2010) Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). J Exp Bot 61:1147–1157. https://doi.org/10.1093/jxb/erp380

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Ma FF, Xu YF, Ma ZQ, Li LH, An DG (2018) Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed 38:91. https://doi.org/10.1007/s11032-018-0837-7

    CAS  Article  Google Scholar 

  46. Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13:648–663. https://doi.org/10.1111/pbi.12288

    CAS  Article  PubMed  Google Scholar 

  47. Maphosa L, Langridge P, Taylor H, Parent B, Emebiri LC, Kuchel H, Reynolds MP, Chalmers KJ, Okada A, Edwards J, Mather DE (2014) Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theor Appl Genet 127:1607–1624. https://doi.org/10.1007/s00122-014-2322-y

    Article  PubMed  Google Scholar 

  48. Miao LL, Mao XG, Wang JY, Liu ZC, Zhang B, Li WY, Chang XP, Reynolds M, Wang ZH, Jing RL (2017) Elite haplotypes of a protein kinase gene TaSnRK2.3 associated with important agronomic traits in common wheat. Front Plant Sci 8:368. https://doi.org/10.3389/fpls.2017.00368

    Article  PubMed  PubMed Central  Google Scholar 

  49. Myskow B, Stojalowski S (2016) Bidirectional selective genotyping approach for the identification of quantitative trait loci controlling earliness per se in winter rye (Secale cereale L.). J Appl Genet 57:45–50. https://doi.org/10.1007/s13353-015-0294-5

    Article  PubMed  Google Scholar 

  50. Navabi A, Mather DE, Bernier J, Spaner DM, Atlin GN (2009) QTL detection with bidirectional and unidirectional selective genotyping: marker-based and trait-based analyses. J Appl Genet 118:347–358. https://doi.org/10.1007/s00122-008-0904-2

    Article  Google Scholar 

  51. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Bergès H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104. https://doi.org/10.1126/science.1161847

    CAS  Article  PubMed  Google Scholar 

  52. Prashant R, Kadoo N, Desale C, Kore P, Dhaliwal HS, Chhuneja P, Gupta V (2012) Kernel morphometric traits in hexaploid wheat (Triticum aestivum L.) are modulated by intricate QTL × QTL and genotype × environment interactions. J Cereal Sci 56:432–439. https://doi.org/10.1016/j.jcs.2012.05.010

    CAS  Article  Google Scholar 

  53. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880. https://doi.org/10.1007/s00122-004-1902-7

    CAS  Article  PubMed  Google Scholar 

  54. Sadras VO, Lawson C (2011) Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop Pasture Sci 62:533–549. https://doi.org/10.1007/s00122-004-1902-7

    CAS  Article  Google Scholar 

  55. Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553. https://doi.org/10.1093/jxb/erp058

    CAS  Article  PubMed  Google Scholar 

  56. Simmonds J, Scott P, Leverington-Waite M, Turner AS, Brinton J, Korzun V, Snape J, Uauy C (2014) Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol 14:1–13. https://doi.org/10.1186/s12870-014-0191-9

    Article  Google Scholar 

  57. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. https://doi.org/10.1007/s00122-004-1740-7

    CAS  Article  PubMed  Google Scholar 

  58. Su QN, Zhang XL, Zhang W, Zhang N, Song LQ, Liu L, Xue X, Liu GT, Liu JJ, Meng DY, Zhi LY, Ji J, Zhao XQ, Yang CL, Tong YP, Liu ZY, Li JM (2018) QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 9:1484. https://doi.org/10.3389/fpls.2018.01484

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sun YP, Wang JK, Crouch JH, Xu YB (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26:493–511. https://doi.org/10.1007/s11032-010-9390-8

    Article  Google Scholar 

  60. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183. https://doi.org/10.1111/tpj.12105

    CAS  Article  PubMed  Google Scholar 

  61. Tang YL, Li J, Wu YQ, Wei HT, Li CS, Yang WY, Chen F (2011) Identification of QTLs for yield-related traits in the ecombinant inbred line population derived from the cross between a synthetic hexaploid wheat-derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. Agric Sci China 10:1665–1680. https://doi.org/10.1016/s1671-2927(11)60165-x

    CAS  Article  Google Scholar 

  62. Voss-Fels KP, Keeble-Gagnère G, Hickey LT, Tibbits J, Nagornyy S, Hayden MJ, Pasam R, Kant S, Friedt W, Snowdon RJ, Appels R, Wittkop B (2019) High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat. Theor Appl Genet 132:2707–2719. https://doi.org/10.1007/s00122-019-03383-4

    CAS  Article  PubMed  Google Scholar 

  63. Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325. https://doi.org/10.1007/s00122-008-0901-5

    CAS  Article  PubMed  Google Scholar 

  64. Wang SC, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796. https://doi.org/10.1111/pbi.12183

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Wang YX, Xu QF, Chang XP, Hao CY, Li RZ, Jing RL (2018) A dCAPS marker developed from a stress associated protein gene TaSAP7-B governing grain size and plant height in wheat. J Integr Agric 17:276–284. https://doi.org/10.1016/s2095-3119(17)61685-x

    CAS  Article  Google Scholar 

  66. Wang XQ, Dong LH, Hu JM, Pang YL, Hu LQ, Xiao GL, Ma X, Kong XY, Jia JZ, Wang HW, Kong LR (2019) Dissecting genetic loci afecting grain morphological traits to improve grain weight via nested association mapping. Theor Appl Genet 132:3115–3128. https://doi.org/10.1007/s00122-019-03410-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Williams K, Sorrells ME (2014) Three-dimensional deed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Sci 54:98–110. https://doi.org/10.2135/cropsci2012.10.0609

    Article  Google Scholar 

  68. Wu XS, Chang XP, Jing RL (2012) Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE 7:e31249. https://doi.org/10.1371/journal.pone.0031249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Wu QH, Chen YX, Zhou SH, Fu L, Chen JJ, Xiao Y, Zhang D, Ouyang SH, Zhao XJ, Cui Y, Zhang DY, Liang Y, Wang ZZ, Xie JZ, Qin JX, Wang GX, Li DL, Huang YL, Yu MH, Lu P, Wang LL, Wang L, Wang H, Dang C, Li J, Zhang Y, Peng HR, Yuan CG, You MS, Sun QX, Wang JR, Wang LX, Luo MC, Han J, Liu ZY (2015) High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817 × Beinong6. PLoS ONE 10:e0118144. https://doi.org/10.1371/journal.pone.0118144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Xiao YG, He SM, Yan J, Zhang Y, Zhang YL, Wu YP, Xia XC, Tian JC, Ji WQ, He ZH (2011) Molecular mapping of quantitative trait loci for kernel morphology traits in a non-1BL.1RS × 1BL.1RS wheat cross. Crop Pasture Sci 62:625–638. https://doi.org/10.1071/CP11037

    Article  Google Scholar 

  71. Xie Q, Mayes S, Sparkes DL (2015) Carpel size, grain filling, and morphology determine individual grain weight in wheat. J Exp Bot 66:6715–6730. https://doi.org/10.1093/jxb/erv378

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Xu YF, Li SS, Li LH, Ma FF, Fu XY, Shi ZL, Xu HX, Ma PT, An DG (2017) QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol Breed 37:34. https://doi.org/10.1007/s11032-016-0583-7

    CAS  Article  Google Scholar 

  73. Yan L, Liang F, Xu HW, Zhang XP, Zhai HJ, Sun QX, Ni ZF (2017) Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheats with near-identical AABB genomes. Front Plant Sci 8:1705. https://doi.org/10.3389/fpls.2017.01705

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yu M, Zhang H, Zhou XL, Hou DB, Chen GY (2017) Quantitative trait loci associated with agronomic traits and stripe rust in winter wheat mapping population using single nucleotide polymorphic markers. Mol Breed 37:105. https://doi.org/10.1007/s11032-017-0704-y

    Article  Google Scholar 

  75. Zhai HJ, Feng ZY, Du XF, Song YE, Liu XY, Qi ZQ, Song L, Li J, Li LH, Peng HR, Hu ZR, Yao YY, Xin MM, Xiao SH, Sun QX, Ni ZF (2018) A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theor Appl Genet 131:539–553. https://doi.org/10.1007/s00122-017-3017-y

    CAS  Article  PubMed  Google Scholar 

  76. Zhang XY, Deng ZY, Wang YR, Li JF, Tian JC (2014) Unconditional and conditional QTL analysis of kernel weight related traits in wheat (Triticum aestivum L.) in multiple genetic backgrounds. Genetica 142:371–379. https://doi.org/10.1007/s10709-014-9781-6

    CAS  Article  PubMed  Google Scholar 

  77. Zou C, Wang PX, Xu YB (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955. https://doi.org/10.1111/pbi.12559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney, for critical review of this manuscript. This work was funded by the National Basic Research Program of China (2014CB138105), National Natural Science Foundation of China (31461143021), National Key Research and Development Programs of China (2016YFD0101802, 2016YFD0100502, 2016YFE0108600), and CAAS Science and Technology Innovation Program.

Author information

Affiliations

Authors

Contributions

LY performed the experiment and wrote the paper. DZ, ZM, and YT participated in the field trials and trait evaluation. JY and KX coordinated the field trials. SC, XX, and ZH provided extensive revision of the manuscript. YZ designed the experiment and wrote the paper. All authors read the final version of the manuscript and approved its publication.

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interests.

Ethical standards

We declare that these experiments complied with the ethical standards in China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ian Mackay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 930 kb)

Supplementary material 2 (DOCX 106 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhao, D., Meng, Z. et al. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theor Appl Genet 133, 857–872 (2020). https://doi.org/10.1007/s00122-019-03511-0

Download citation