Skip to main content
Log in

Fine mapping of root lesion nematode (Pratylenchus thornei) resistance loci on chromosomes 6D and 2B of wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Key message

Resistance QTL to root lesion nematode (Pratylenchus thornei) in wheat (Triticum aestivum), QRlnt.sk-6D and QRlnt.sk-2B, were mapped to intervals of 3.5 cM/1.77 Mbp on chromosome 6D and 1.4 cM/2.19 Mbp on chromosome 2B, respectively. Candidate resistance genes were identified in the QTL regions and molecular markers developed for marker-assisted breeding.

Abstract

Two previously known resistance QTL for root lesion nematode (Pratylenchus thornei) in bread wheat (Triticum aestivum), QRlnt.sk-6D and QRlnt.sk-2B, were fine-mapped using a Sokoll (moderately resistant) by Krichauff (susceptible) doubled haploid (DH) population and six newly developed recombinant inbred line populations. Bulked segregation analysis with the 90K wheat SNP array identified linked SNPs which were subsequently converted to KASP assays for mapping in the DH and RIL populations. On chromosome 6D, 60 KASP and five SSR markers spanned a total genetic distance of 23.7 cM. QRlnt.sk-6D was delimited to a 3.5 cM interval, representing 1.77 Mbp in the bread wheat cv. Chinese Spring reference genome sequence and 2.29 Mbp in the Aegilops tauschii genome sequence. These intervals contained 42 and 43 gene models in the respective annotated genome sequences. On chromosome 2B, 41 KASP and 5 SSR markers produced a map spanning 19.9 cM. QRlnt.sk-2B was delimited to 1.4 cM, corresponding 3.14 Mbp in the durum wheat cv. Svevo reference sequence and 2.19 Mbp in Chinese Spring. The interval in Chinese Spring contained 56 high-confidence gene models. Intervals for both QTL contained genes with similarity to those previously reported to be involved in disease resistance, namely genes for phenylpropanoid biosynthetic pathway-related enzymes, NBS-LRR proteins and protein kinases. The potential roles of these candidate genes in P. thornei resistance are discussed. The KASP markers reported in this study could potentially be used for marker-assisted breeding of P. thornei-resistant wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afzal AJ, Natarajan A, Saini N, Iqbal MJ, Geisler M, El Shemy HA, Mungur R, Willmitzer L, Lightfoot DA (2009) The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. Plant Physiol 151:1264–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C, Guerche C, Loaec M, Lainé M, Steinbach D, Choulet F, Rimbert H, Leroy P, Guilhot N, Salse J, Feuillet C, International Wheat Genome Sequencing C, Paux E, Eversole K, Adam-Blondon A-F, Quesneville H (2018) Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099

    Article  CAS  PubMed  Google Scholar 

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  PubMed  Google Scholar 

  • Baldridge GD, O’Neill NR, Samac DA (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol Biol 38:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Boydston R, Paxton JD, Koeppe DE (1983) Glyceollin: a site-specific inhibitor of electron transport in isolated soybean mitochondria. Plant Physiol 72:151–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Springer, New York

    Book  Google Scholar 

  • Butler DG (2013) On the optimal design of experiments under the linear mixed model. Ph.D. Thesis. School of Mathematics and Physics, The University of Queensland, Australia

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual version 3. Queensland Department of Primary Industries and Fisheries, Brisbane

    Google Scholar 

  • Castillo P, Vovlas N, Jiménez-Díaz RM (1998) Pathogenicity and histopathology of Pratylenchus thornei populations on selected chickpea genotypes. Plant Pathol 47:370–376

    Article  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Li N, Dong L, Zhang D, Fan S, Jiang L, Wang X, Xu P, Zhang S (2015) Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Front Plant Sci 6:1024

    PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook R (1974) Nature and inheritance of nematode resistance in cereals. J Nematol 6:165–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dababat AA, Mokrini F, Laasli SE, Yildiz S, Erginbas-Orakci G, Duman N, Ímren M (2019) Host suitability of different wheat lines to Pratylenchus thornei under naturally infested field conditions in Turkey. Nematology 21:557–571

    Article  Google Scholar 

  • Dao TTH, Linthorst HJM, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochem Rev 10:397–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies LJ, Elling AA (2015) Resistance genes against plant-parasitic nematodes: a durable control strategy? Nematology 17:249–263

    Article  CAS  Google Scholar 

  • Davis EL, Haegeman A, Kikuchi T (2011) Degradation of the plant cell wall by nematodes. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 255–272

    Chapter  Google Scholar 

  • de Virgilio M, Lombardi A, Caliandro R, Fabbrini MS (2010) Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins 2:2699–2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Fosu-Nyarko J, Jones MGK (2016) Advances in understanding the molecular mechanisms of root lesion nematode host interactions. Annu Rev Phytopathol 54:253–278

    Article  CAS  PubMed  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor–like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  Google Scholar 

  • Gou X, He K, Yang H, Yuan T, Lin H, Clouse SD, Li J (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genom 11:19

    Article  CAS  Google Scholar 

  • Haling RE, Simpson RJ, McKay AC, Hartley D, Lambers H, Ophel-Keller K, Wiebkin S, Herdina Riley IT, Richardson AE (2011) Direct measurement of roots in soil for single and mixed species using a quantitative DNA-based method. Plant Soil 348:123–137

    Article  CAS  Google Scholar 

  • Holbein J, Grundler FMW, Siddique S (2016) Plant basal resistance to nematodes: an update. J Exp Bot 67:2049–2061

    Article  CAS  PubMed  Google Scholar 

  • Hollaway GJ, Ophel-Keller KM, Taylor SP, Burns RA, McKay AC (2003) Effect of soil water content, sampling method and sample storage on the quantification of root lesion nematodes (Pratylenchus spp.) by different methods. Aust Plant Pathol 32:73–79

    Article  Google Scholar 

  • Hölscher D, Dhakshinamoorthy S, Alexandrov T, Becker M, Bretschneider T, Buerkert A, Crecelius AC, De Waele D, Elsen A, Heckel DG, Heklau H, Hertweck C, Kai M, Knop K, Krafft C, Maddula RK, Matthäus C, Popp J, Schneider B, Schubert US, Sikora RA, Svatoš A, Swennen RL (2014) Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis. Proc Natl Acad Sci 111:105–110

    Article  CAS  PubMed  Google Scholar 

  • Hutangura P, Mathesius U, Jones MGK, Rolfe BG (1999) Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Funct Plant Biol 26:221–231

    Article  CAS  Google Scholar 

  • Jones MGK, Fosu-Nyarko J (2014) Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann Appl Biol 164:163–181

    Article  CAS  Google Scholar 

  • Kaplan DT, Keen NT, Thomason IJ (1980) Studies on the mode of action of glyceollin in soybean incompatibility to the root knot nematode, Meloidogyne incognita. Physiol Plant Pathol 16:319–325

    Article  CAS  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ST, Cho KS, Kim SG, Kang SY, Kang KY (2003) A Rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol Cells 16:224–231

    CAS  PubMed  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Ling H-Q, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJT, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsell KJ, Rahman MS, Taylor JD, Davey RS, Gogel BJ, Wallwork H, Forrest KL, Hayden MJ, Taylor SP, Oldach KH (2014a) QTL for resistance to root lesion nematode (Pratylenchus thornei) from a synthetic hexaploid wheat source. Theor Appl Genet 127:1409–1421

    Article  CAS  PubMed  Google Scholar 

  • Linsell KJ, Riley IT, Davies KA, Oldach KH (2014b) Characterization of resistance to Pratylenchus thornei (Nematoda) in wheat (Triticum aestivum): attraction, penetration, motility, and reproduction. Phytopathology 104:174–187

    Article  PubMed  Google Scholar 

  • Luo M-C, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, McGuire PE, Liu S, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan L, Wang Z, Xia Z, Xiao L, Anderson OD, Ouyang S, Liang Y, Zimin AV, Pertea G, Qi P, Bennetzen JL, Dai X, Dawson MW, Müller H-G, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu F-H, Bevan MW, Leroy P, Li P, You FM, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvořák J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Stiller J, Wei Y, Zheng Y-L, Devos KM, Doležel J, Liu C (2014) Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype “Chinese Spring” revealed from chromosome shotgun sequence data. Genome Biol Evol 6:3039–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, Himmelbach A, Mascher M, Bagnaresi P, Faccioli P, Cozzi P, Lauria M, Lazzari B, Stella A, Manconi A, Gnocchi M, Moscatelli M, Avni R, Deek J, Biyiklioglu S, Frascaroli E, Corneti S, Salvi S, Sonnante G, Desiderio F, Marè C, Crosatti C, Mica E, Özkan H, Kilian B, De Vita P, Marone D, Joukhadar R, Mazzucotelli E, Nigro D, Gadaleta A, Chao S, Faris JD, Melo ATO, Pumphrey M, Pecchioni N, Milanesi L, Wiebe K, Ens J, MacLachlan RP, Clarke JM, Sharpe AG, Koh CS, Liang KYH, Taylor GJ, Knox R, Budak H, Mastrangelo AM, Xu SS, Stein N, Hale I, Distelfeld A, Hayden MJ, Tuberosa R, Walkowiak S, Mayer KFX, Ceriotti A, Pozniak CJ, Cattivelli L (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51:885–895

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore JRH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • Mokrini F, Viaene N, Waeyenberge L, Dababat AA, Moens M (2019) Root-lesion nematodes in cereal fields: importance, distribution, identification, and management strategies. J Plant Dis Prot 126:1–11

    Article  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nugroho LH, Verberne MC, Verpoorte R (2002) Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiol Biochem 40:755–760

    Article  CAS  Google Scholar 

  • Ogbonnaya FC, Imtiaz M, Bariana HS, McLean M, Shankar MM, Hollaway GJ, Trethowan RM, Lagudah ES, van Ginkel M (2008) Mining synthetic hexaploids for multiple disease resistance to improve bread wheat. Aust J Agric Res 59:421–431

    Article  Google Scholar 

  • Ophel-Keller K, McKay A, Hartley D, Herdina Curran J (2008) Development of a routine DNA-based testing service for soilborne diseases in Australia. Aust Plant Pathol 37:243–253

    Article  CAS  Google Scholar 

  • Owen KJ, Clewett TG, Bell KL, Thompson JP (2014) Wheat biomass and yield increased when populations of the root-lesion nematode (Pratylenchus thornei) were reduced through sequential rotation of partially resistant winter and summer crops. Crop Pasture Sci 65:227–241

    Article  Google Scholar 

  • Peng H-C, Kaloshian I (2014) The tomato leucine-rich repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity. PLoS ONE 9:e93302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C (2018) The transcriptional landscape of polyploid wheat. Science 361:662

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/

  • Riley IT, Wiebkin S, Hartley D, McKay AC (2010) Quantification of roots and seeds in soil with real-time PCR. Plant Soil 331:151–163

    Article  CAS  Google Scholar 

  • Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, Duarte J, Rivière N, Eversole K, on behalf of The International Wheat Genome Sequencing Consortium, Le Gouis J, on behalf The BreedWheat Consortium, Davassi A, Balfourier F, Le Paslier M-C, Berard A, Brunel D, Feuillet C, Poncet C, Sourdille P, Paux E (2018) High throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE 13:e0186329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson NA, Sheedy JG, MacDonald BJ, Owen KJ, Thompson JP (2019) Tolerance of wheat cultivars to root-lesion nematode (Pratylenchus thornei) assessed by normalised difference vegetation index is predictive of grain yield. Ann Appl Biol 174:388–401

    Article  Google Scholar 

  • Rohde RA (1972) Expression of resistance in plants to nematodes. Annu Rev Phytopathol 10:233–252

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheedy JG, Thompson JP (2009) Resistance to the root-lesion nematode Pratylenchus thornei of Iranian landrace wheat. Aust Plant Pathol 38:478–489

    Article  Google Scholar 

  • Sheedy JG, Thompson JP, Kelly A (2012) Diploid and tetraploid progenitors of wheat are valuable sources of resistance to the root lesion nematode Pratylenchus thornei. Euphytica 186:377–391

    Article  Google Scholar 

  • Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5:291–317

    Article  Google Scholar 

  • Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci 98:10763–10768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smiley RW, Nicol JM (2009) Nematodes which challenge global wheat production. In: Carver BF (ed) Wheat science and trade. Wiley, New York, pp 171–187

    Chapter  Google Scholar 

  • Smiley RW, Gourlie JA, Yan G, Rhinhart KEL (2014) Resistance and tolerance of landrace wheat in fields infested with Pratylenchus neglectus and P. thornei. Plant Dis 98:797–805

    Article  PubMed  Google Scholar 

  • Takken FLW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Butler D (2017) R Package ASMap: efficient genetic linkage map construction and diagnosis. J Stat Softw 79:1–29

    Article  Google Scholar 

  • Taylor SP, Evans ML (1998) Vertical and horizontal distribution of and soil sampling for root lesion nematodes (Pratylenchus neglectus and P. thornei) in South Australia. Aust Plant Pathol 27:90–96

    Article  Google Scholar 

  • The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  CAS  Google Scholar 

  • Thompson JP, Brennan PS, Clewett TG, Sheedy JG, Seymour NP (1999) Progress in breeding wheat for tolerance and resistance to root-lesion nematode (Pratylenchus thornei). Aust Plant Pathol 28:45–52

    Article  Google Scholar 

  • Thompson JP, Owen KJ, Stirling GR, Bell MJ (2008) Root-lesion nematodes (Pratylenchus thornei and P. neglectus): a review of recent progress in managing a significant pest of grain crops in northern Australia. Aust Plant Pathol 37:235–242

    Article  Google Scholar 

  • Valette C, Andary C, Geiger JP, Sarah JL, Nicole M (1998) Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology 88:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  CAS  PubMed  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “Phytoanticipins”. Plant Cell 6:1191–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanstone VA, Rathjen AJ, Ware AH, Wheeler RD (1998) Relationship between root lesion nematodes (Pratylenchus neglectus and P. thornei) and performance of wheat varieties. Aust J Exp Agric 38:181–188

    Article  Google Scholar 

  • Vanstone VA, Hollaway GJ, Stirling GR (2008) Managing nematode pests in the southern and western regions of the Australian cereal industry: continuing progress in a challenging environment. Aust Plant Pathol 37:220–234

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Bhat P, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu S, Wang Q, Zeng Q, Mu J, Huang S, Yu S, Han D, Kang Z (2018) Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor Appl Genet 131:43–58

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Hu J, Zou J, Qiu D, Qu Y, Li Y, Li T, Zhang H, Yang L, Liu H, Zhou Y, Zhang Z, Li J, Liu Z, Li H (2019) Fine mapping of the wheat powdery mildew resistance gene Pm52 using comparative genomics analysis and the Chinese Spring reference genomic sequence. Theor Appl Genet 132:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Wuyts N, Swennen R, De Waele D (2006) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89–101

    Article  CAS  Google Scholar 

  • Wuyts N, Lognay G, Verscheure M, Marlier M, De Waele D, Swennen R (2007) Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathol 56:878–890

    Article  CAS  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Zhou Y-K, Ji Z-L, Chen X-R (2018) The plant ribosome-inactivating proteins play important roles in defense against pathogens and insect pest attacks. Front Plant Sci 9:146

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the staff at SARDI Crop Pathology and SARDI Nematology groups for providing the initial seeds of the RIL populations and support in setting up the nematode experiments, respectively. We would also like to thank SARDI Root Disease Testing Service for their help and constructive interaction throughout this project. The 90K marker work was done with the support of DAV00127, a joint project Agriculture Victoria Research (AVR), CSIRO Agriculture and GRDC. Our appreciation is extended to the Grains Research and Development Corporation for their financial assistance and the University of Adelaide for the postgraduate scholarship to MSR. NCC was supported by the University of Adelaide, the GRDC and the Government of South Australia.

Author information

Authors and Affiliations

Authors

Contributions

MSR and KHO designed the research (project conception and development of overall research plan). MSR conducted hands-on experiments and data collection. MSR, KL, NCC and KHO conducted data analysis. MSR, MH and JT performed statistical analysis. MSR, KL, NCC and KHO wrote the paper and have primary responsibility for the final content.

Corresponding author

Correspondence to Klaus H. Oldach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hermann Buerstmayr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

1

Details of SNPs from the 90K wheat SNP array that were shown using bulked segregation analysis to be linked to the QRlnt.sk-6D nematode resistance locus. Details of these SNPs were derived from Wang et al. (2014) (XLSX 19 kb)

2

Details of SNPs from the 90K wheat SNP array that were shown using bulked segregation analysis to be linked to the QRlnt.sk-2B (XLSX 20 kb)

3

Genetic linkage map of chromosome 6D of Sokoll/Krichauff doubled haploid population (65 lines) obtained using the 90K what SNP chip (XLSX 22 kb)

4

Genetic linkage map of chromosome 6D of Sokoll/Krichauff doubled haploid population (65 lines) obtained using the 90K what SNP chip assay (XLSX 52 kb)

5

Details of KASP markers used for constructing the genetic linkage map of chromosome 6DS. 1: ‘A’ refers to 90K wheat SNP chip array (XLSX 35 kb)

6

List of gene models between the markers flanking QRlnt.sk-6D QTL. Gene annotation based in Chinese Spring IWGSC RefSeq version 1.0 (XLSX 22 kb)

7

Details of KASP markers used for constructing the genetic linkage map of chromosome 2BS. 1: Source of SNPs, 1 refers to 90K wheat SNP chip array (Wang et al. 2014) and 2 refers to cereal database, University of Bristol (Allen et al. 2011) (XLSX 24 kb)

8

List of gene modes located between markers flanking QRlnt.sk-2B QTL. Gene annotation based in Chinese Spring IWGSC RefSeq version 1.0 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Linsell, K.J., Taylor, J.D. et al. Fine mapping of root lesion nematode (Pratylenchus thornei) resistance loci on chromosomes 6D and 2B of wheat. Theor Appl Genet 133, 635–652 (2020). https://doi.org/10.1007/s00122-019-03495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03495-x

Navigation