Skip to main content
Log in

Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The Cucurbitaceae family hosts many economically important fruit vegetables (cucurbits) such as cucumber, melon, watermelon, pumpkin/squash, and various gourds. The cucurbits are probably best known for the diverse fruit sizes and shapes, but little is known about their genetic basis and molecular regulation. Here, we reviewed the literature on fruit size (FS), shape (FSI), and fruit weight (FW) QTL identified in cucumber, melon, and watermelon, from which 150 consensus QTL for these traits were inferred. Genome-wide survey of the three cucurbit genomes identified 253 homologs of eight classes of fruit or grain size/weight-related genes cloned in Arabidopsis, tomato, and rice that encode proteins containing the characteristic CNR (cell number regulator), CSR (cell size regulator), CYP78A (cytochrome P450), SUN, OVATE, TRM (TONNEAU1 Recruiting Motif), YABBY, and WOX domains. Alignment of the consensus QTL with candidate gene homologs revealed widespread structure and function conservation of fruit size/shape gene homologs in cucurbits, which was exemplified with the fruit size/shape candidate genes CsSUN25-26-27a and CsTRM5 in cucumber, CmOFP1a in melon, and ClSUN25-26-27a in watermelon. In cucurbits, the andromonoecy (for 1-aminocyclopropane-1-carboxylate synthase) and the carpel number (for CLAVATA3) loci are known to have pleiotropic effects on fruit shape, which may complicate identification of fruit size/shape candidate genes in these regions. The present work illustrates the power of comparative analysis in understanding the genetic architecture of fruit size/shape variation, which may facilitate QTL mapping and cloning for fruit size-related traits in cucurbits. The limitations and perspectives of this approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelmohsin M, Pitrat M (2008) Pleiotropic effect of sex expression on fruit shape in melon. In: Pitrat M (ed) Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. INRA, Avignon, pp 551–556

  • Abel S, Savchenko T, Levy M (2005) Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evol Biol 5:72

    PubMed  PubMed Central  Google Scholar 

  • Aguado E, García A, Manzano S, Valenzuela JL, Cuevas J, Pinillos V, Jamilena M (2018) The sex-determining gene CitACS4 is a pleiotropic regulator of flower and fruit development in watermelon (Citrullus lanatus). Plant Reprod 31:411–426

    CAS  PubMed  Google Scholar 

  • Alvarez J, Smyth DR (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126:2377–2386

    CAS  PubMed  Google Scholar 

  • Ando K, Grumet R (2010) Transcriptional profiling of rapidly growing cucumber fruit by 454-pyrosequencing analysis. J Am Soc Hortic Sci 135:291–302

    Google Scholar 

  • Ando K, Carr KM, Grumet R (2012) Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics 13:518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679

    CAS  PubMed  Google Scholar 

  • Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64

    CAS  PubMed  Google Scholar 

  • Bisht IS, Bhat KV, Tanwar SPS, Bhandari DC, Joshi K, Sharma AK (2004) Distribution and genetic diversity of Cucumis sativus var. hardwickii (Royle) Alef in India. J Hortic Sci Biotech 79:783–791

    CAS  Google Scholar 

  • Bo KL, Ma Z, Chen JF, Weng YQ (2015) Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet 128:25–39

    CAS  PubMed  Google Scholar 

  • Boualem A, Fergany M, Fernandez R et al (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838

    CAS  PubMed  Google Scholar 

  • Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS ONE 4:e6144

    PubMed  PubMed Central  Google Scholar 

  • Boualem A, Troadec C, Camps C et al (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350:688–691

    CAS  PubMed  Google Scholar 

  • Boualem A, Lemhemdi A, Sari MA, Pignoly S, Troadec C, Choucha FA, Solmaz I, Sari N, Dogimont C, Bendahmane A (2016) The andromonoecious sex determination gene predates the separation of Cucumis and Citrullus genera. PLoS ONE 11:e0155444

    PubMed  PubMed Central  Google Scholar 

  • Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    CAS  PubMed  Google Scholar 

  • Brewer MT, Lang L, Fujimura K, Dujmovic N, Gray S, van der Knaap E (2006) Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol 141:15–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti M, Zhang N, Sauvage C et al (2013) A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci USA 110:17125–17130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CW, Wang YH, Tung CW (2017) Genome-wide single nucleotide polymorphism discovery and the construction of a high-density genetic map for melon (Cucumis melo L.) using genotyping-by-sequencing. Front Plant Sci 8:125

    PubMed  PubMed Central  Google Scholar 

  • Cheng ZC, Gu XF, Zhang SP, Mail H, Zhang RW, Liu MM, Yang SJ (2010) QTL Mapping of fruit length in cucumber. China Veg 12:20–25 (in Chinese)

    Google Scholar 

  • Colle M, Weng YQ, Kang YY, Ophir R, Sherman A, Grumet R (2017) Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination. Planta 246:641–658

    CAS  PubMed  Google Scholar 

  • Cong B, Barrero LB, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    CAS  PubMed  Google Scholar 

  • Coombe BG (1976) The development of fleshy fruits. Annu Rev Plant Physiol 27:207–228

    CAS  Google Scholar 

  • Dhillon NPS, Sanguansil S, Singh SP, Masud MAT, Kumar P, Bharathi LK, Yetişir H, Huang R, Canh DX, McCreight JD (2016) Gourds: bitter, bottle, wax, snake, sponge and ridge. In: Grumet R, Katzir N, Garcia-Mas J (eds) Gourds: bitter, bottle, wax, snake, sponge and ridge, plant genetics and genomics: crops and Models. Springer, Berlin, pp 154–172

    Google Scholar 

  • Diaz A, Fergany M, Formisano G et al (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz A, Zarouri B, Fergany M, Eduardo I, Alvarez JM, Pico B, Monforte AJ (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into 'Piel de Sapo' melon (Cucucumis melo L.). PloS ONE 9:e104188

    PubMed  PubMed Central  Google Scholar 

  • Diaz A, Martin-Hernandez AM, Dolcet-Sanjuan R, Garces-Claver A, Alvarez JM, Garcia-Mas J, Pico B, Monforte AJ (2017) Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theor Appl Genet 130:1837–1856

    PubMed  Google Scholar 

  • Dijkhuizen A, Staub JE (2002) QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): effects of environment and genetic background. J New Seeds 4:1–30

    Google Scholar 

  • Dou JL, Zhao SJ, Lu XQ, He N, Zhang L, Ali A, Kuang HH, Liu WG (2018) Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet 131:947–958

    CAS  PubMed  Google Scholar 

  • Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S et al (2012) The Arabidopsis TRM1–TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 24:178–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan PG, Xu JS, Zeng DL et al (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694

    CAS  PubMed  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI 161375. Theor Appl Genet 112:139–148

    CAS  PubMed  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcon AL, Alvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89

    Google Scholar 

  • Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, Nuez F, Picó B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13:80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fazio G, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    CAS  PubMed  Google Scholar 

  • Fernandez-Silva I, Moreno E, Eduardo I, Arus P, Alvarez JM, Monforte AJ (2009) On the genetic control of heterosis for fruit shape in melon (Cucumis melo L.). J Hered 100:229–235

    CAS  PubMed  Google Scholar 

  • Fernandez-Silva I, Moreno E, Essafi A, Fergany M, Garcia-Mas J, Martin-Hernandez AM, Alvarez JM, Monforte AJ (2010) Shaping melons: agronomic and genetic characterization of QTL that modify melon fruit morphology. Theor Appl Genet 121:931–940

    PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    CAS  PubMed  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Yu JQ (2010) Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber. Plant Biol 12:98–107

    CAS  PubMed  Google Scholar 

  • Galpaz N, Gonda I, Shem-Tov D et al (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J 940:169–191

    Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillaspy G, Bendavid H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    PubMed  PubMed Central  Google Scholar 

  • Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, Howard RJ, Hou Z, Simmons CR (2010) Cell number regulator 1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22:1057–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo SG, Zhang JG, Sun HH et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    CAS  PubMed  Google Scholar 

  • Gur A, Tzuri G, Meir A, Sa'ar U, Portnoy V, Katzir N, Schaffer AA, Li L, Burger J, Tadmor Y (2017) Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci Rep UK 7:9970

    Google Scholar 

  • Gusmini G, Wehner TC (2005) Foundations of yield improvement in watermelon. Crop Sci 45:141–146

    Google Scholar 

  • Gusmini G, Wehner TC (2007) Heritability and genetic variance estimates for fruit weight in watermelon. HortScience 42:1332–1336

    Google Scholar 

  • Hackbusch J, Richter K, Müller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 102:4908–4912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V et al (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533

    CAS  PubMed  Google Scholar 

  • He XM, Li YH, Pandey S, Yandell BS, Pathak M, Weng Y (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161

    CAS  PubMed  Google Scholar 

  • Huang SW, Li RQ, Zhang ZH et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  PubMed  Google Scholar 

  • Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genomics 288:111–129

    CAS  PubMed  Google Scholar 

  • Ji G, Zhang J, Gong G, Shi J, Zhang H, Ren Y, Guo S, Gao J, Shen H, Xu Y (2015) Inheritance of sex forms in watermelon (Citrullus lanatus). Sci Hortic-Amsterdam 193:367–373

    Google Scholar 

  • Ji G, Zhang J, Zhang H et al (2016) Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4) led to andromonoecy in watermelon. J Integr Plant Biol 58:762–765

    CAS  PubMed  Google Scholar 

  • Jiang L, Yan S, Yang W et al (2015) Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Sci Rep UK 5:8031

    Google Scholar 

  • Kalb TJ, Davis DW (1984) Evaluation of combining ability, heterosis, and genetic variance for fruit quality characteristics in bush muskmelon. J Am Soc Hortic Sci 109:411–415

    Google Scholar 

  • Kennard WC, Havey MJ (1995) Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet 91:53–61

    PubMed  Google Scholar 

  • Kim KH, Hwang JH, Han DY, Park M, Kim S, Choi D, Kim Y, Lee GP, Kim ST, Park YH (2015) Major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS ONE 10:e0145665

    PubMed  PubMed Central  Google Scholar 

  • Kole C, Olukolu B, Kole P, Rao VK, Bajpai A, Backiyarani S, Singh J, Elanchezhian R, Abbott AG (2012) The first genetic map and positions of major fruit trait loci of bitter melon (Momordica charantia). J Plant Sci Mol Breed 1:1–6

    Google Scholar 

  • Kubicki B (1962) Inheritance of some characters in muskmelons (Cucumis melo L.). Genetica Polonica 3:265–274

    Google Scholar 

  • Kumar R, Wehner TC (2013) Quantitative analysis of generations for inheritance of fruit yield in watermelon. HortScience 48:844–847

    Google Scholar 

  • Lazzaro MD, Wu S, Snouffer A, Wang YP, van der Knaap E (2018) Plant organ shapes are regulated by protein interactions and associations with microtubules. Front Plant Sci 9:1766

    PubMed  PubMed Central  Google Scholar 

  • Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI (2006) LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133:4305–4314

    CAS  PubMed  Google Scholar 

  • Levi A, Jarret R, Kousik S, Wechter WP, Nimmakayala P, Reddy UK (2016) Genetic resources of watermelon. In: Grumet R, et al. (eds) Genetics and genomics of cucurbitaceae, plant genetics and genomics: crops and models. Springer, Berlin pp 87–110

    Google Scholar 

  • Li Z, Huang S, Liu S, Pan J, Zhang Z, Tao Q, Shi Q, Jia Z, Zhang W, Chen H et al (2009) Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381–1385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li DW, Cuevas HE, Yang LM et al (2011) Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 12:396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Pan YP, Wen CL, Li YH, Liu XF, Zhang XL, Behera TK, Xing GM, Weng Y (2016) Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber. Theor Appl Genet 129:1007–1022

    PubMed  Google Scholar 

  • Li N, Xu R, Duan PG, Li YH (2018) Control of grain size in rice. Plant Reprod 31:237–251

    CAS  PubMed  Google Scholar 

  • Li N, Xu R, Li YH (2019) Molecular networks of seed size control in plants. Annu Rev Plant Biol 70:435–463

    CAS  PubMed  Google Scholar 

  • Liang S, Chen J, Xiao K, Yang WC (2017) Origin of the domesticated horticultural species and molecular bases of fruit shape and size changes during the domestication, taking tomato as an example. Hortic Plant J 3:125–132

    Google Scholar 

  • Lippert LF, Hall MO (1982) Heritabilities and correlations in muskmelon from parent-offspring regression analyses. J Am Soc Hortic Sci 107:217–221

    Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    CAS  PubMed  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CQ, Gao P, Luan FS (2014) A linkage map for watermelon and QTL analysis for fruit related traits. Sci Agric Sin 47:2814–2829

    CAS  Google Scholar 

  • Liu S, Gao P, Zhu QL, Luan FS, Davis AR, Wang XL (2016) Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data. Breed Sci 66:244–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JF, Chen J, Zheng XM et al (2017) GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plants 3:17043

    CAS  PubMed  Google Scholar 

  • Liu WR, Jiang B, Peng QW, He XM, Lin YE, Wang M, Liang ZJ, Xie DS, Hu KL (2018) Genetic analysis and QTL mapping of fruit-related traits in wax gourd (Benincasa hispida). Euphytica 214:136

    Google Scholar 

  • Lu F, Xu Y, Zhao Y, Cao D, Feng JM, Guo SG, Gong GY, Yi HJ, Wu MZ, Zhang HY (2009) Construction of permanent genetic map and comparative analysis of Xinjiang Hami melon [Cucumis melo L. ssp. melo convar. ameri (Pang.) Greb.). Acta Horticulture Sinica 36:1767–1774 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Lu BY, Zhou HW, Chen X, Luan FS, Wang XZ, Jiang Y (2016) QTL analysis of fruit traits in watermelon. J Fruit Sci 33:1206–1218 (In Chinese with English abstract)

    Google Scholar 

  • Marcelis LFM, Hofmaneijer LRB (1993) Cell division and expansion in the cucumber fruit. J Hortic Sci 68:665–671

    Google Scholar 

  • Martínez C, Manzano S, Megías Z, Barrera A, Boualem A, Garrido D, Bendahmane A, Jamilena M (2014) Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta 239:1201–1215

    PubMed  Google Scholar 

  • Martos-Fuentes M, Lizarzaburu JA, Aguayo E, Martinez C, Jamilena M (2018) Pleiotropic effects of CmACS7 on fruit growth and quality parameters in melon (Cucumis melo). Acta Hort 1151:115–121

    Google Scholar 

  • McKay JW (1936) Factor interaction in Citrullus. J Hered 27:110–112

    Google Scholar 

  • Merrick LC (1995) Squashes, pumpkins and gourds. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, London, pp 97–105

    Google Scholar 

  • Miao H, Gu XF, Zhang SP et al (2011) Mapping QTLs for fruit-associated traits in Cucumis sativus L. Sci Agric Sin 44:5031–5040 (in Chinese with English abstract)

    Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    CAS  PubMed  Google Scholar 

  • Monforte AJ, Diaz A, Cano-Delgado A, van der Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637

    CAS  PubMed  Google Scholar 

  • Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez EM, Gómez P, Monforte AJ, Cañizares J, Picó B (2017) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in zucchini using genotyping-by-sequencing. BMC Genomics 18:94

    PubMed  PubMed Central  Google Scholar 

  • Montero-Pau J, Blanca J, Bombarely A et al (2018) De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J 16:1161–1171

    CAS  PubMed  Google Scholar 

  • Moreno E, Fernandez-Silva I, Eduardo I, Mascarell A, Alvarez JM, Cano A, Monforte AJ (2008) Agronomical, genetical and developmental characterization of fs6.4: a quantitative trait locus controlling melon fruit shape. In: Pitrat M (ed) Cucurbitaceae 2008, Proc 9th EUCARPIA meeting on genetics and breeding of Cucurbitaceae. INRA, Avignon France, pp 101–108

    Google Scholar 

  • Mu Q, Huang Z, Chakrabarti M, Illa-Berenguer E, Liu X, Wang Y, Ramos A, van der Knaap E (2017) Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet 13:e1006930

    PubMed  PubMed Central  Google Scholar 

  • Muños S, Ranc N, Botton E et al (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244–2254

    PubMed  PubMed Central  Google Scholar 

  • Mutschler MA, Pearson OH (1987) The origin, inheritance, and instability of butternut squash (Cucurbita moschata Duchesne). HortScience 22:535–539

    Google Scholar 

  • Okello RCO, Heuvelink E, de Visser PHB, Struik PC, Marcelis LFM (2015) What drives fruit growth? Funct Plant Biol 42:817–827

    PubMed  Google Scholar 

  • Owens KW, Bliss FA, Peterson CE (1985) Genetic analysis of fruit length and weight in two cucumber populations using the inbred backcross lines. J Am Soc Hortic Sci 110:431–436

    Google Scholar 

  • Pan YP, Liang XJ, Gao ML, Liu HQ, Meng HW, Weng YQ, Cheng ZH (2017a) Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130:573–586

    CAS  PubMed  Google Scholar 

  • Pan YP, Qu SP, Bo KL, Gao ML, Haider KR, Weng YQ (2017b) QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theor Appl Genet 130:1531–1548

    CAS  PubMed  Google Scholar 

  • Paris HS (1989) Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ Botany 43:423–443

    Google Scholar 

  • Paris HS (2000) History of the cultivar-groups of Cucurbita pepo. Horticultural Reviews. 25:71–170

    Google Scholar 

  • Paris HS (2008) Summer squash. In: Prohens J, Nuez F (eds) Handbook of plant breeding, vegetables I. Springer, New York, pp 351–379

    Google Scholar 

  • Paris HS, Brown RN (2005) The genes of pumpkin and squash. HortScience 40:1620–1630

    CAS  Google Scholar 

  • Paris MK, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic x elite US Western Shipping germplasm. Mol Breed 22:405–419

    CAS  Google Scholar 

  • Paris HS (2016a) Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens. Veg Hist Archaeobot 25:405–414

    Google Scholar 

  • Paris HS (2016b) Genetic Resources of Pumpkins and Squash, Cucurbita spp. In: Grumet R, et al. (eds) Genetics and genomics of cucurbitaceae, plant genetics and genomics: crops and models. Springer, Berlin, pp 111–154

    Google Scholar 

  • Pereira L, Ruggieri V, Pérez S, Alexiou KG, Fernández M, Jahrmann T, Pujol M, Garcia-Mas J (2018) QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biol 18:324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics 266:933–941

    CAS  PubMed  Google Scholar 

  • Perpina G, Esteras C, Gibon Y, Monforte AJ, Pico B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154

    PubMed  PubMed Central  Google Scholar 

  • Pitrat M (2016) Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, et al. (eds) Genetics and genomics of cucurbitaceae, plant genetics and genomics: crops and models. Springer, Berlin, pp 25–60

    Google Scholar 

  • Poole CF, Grimball PC (1945) Interaction of sex, shape, and weight genes in watermelon. J Agric Res 71:533–552

    CAS  PubMed  Google Scholar 

  • Prothro J, Abdel-Haleem H, Bachlava E, White V, Knapp S, McGregor C (2013) Quantitative trait loci associated with sex expression in an inter-subspecific watermelon population. J Am Soc Hortic Sci 138:125–130

    CAS  Google Scholar 

  • Qi JJ, Liu X, Shen D et al (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    CAS  PubMed  Google Scholar 

  • Ramamurthy RK, Waters BM (2015) Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 204:163–177

    Google Scholar 

  • Reddy UK, Abburi L, Abburi VL et al (2015) A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J Hered 106:166–176

    CAS  PubMed  Google Scholar 

  • Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun HH, Cai WT, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14:33

    PubMed  PubMed Central  Google Scholar 

  • Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, Wallingford, pp 61–97

    Google Scholar 

  • Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa J (1928) The inheritance of flower types in Cucumis and Citrullus. Hilgardia 3:233–250

    Google Scholar 

  • Ruggieri V, Alexiou KG, Morata J et al (2018) An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Sci Rep UK 8:8088

    Google Scholar 

  • Sandlin K, Prothro J, Heesacker A et al (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125:1603–1618

    PubMed  Google Scholar 

  • Schaefer H, Renner SS (2011) Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60:122–138

    Google Scholar 

  • Sheng YS, Pan YP, Li YH, Yang LM, Weng Y (2019) Quantitative trait loci for fruit size and flowering time-related traits under domestication and diversifying selection in cucumber (Cucumis sativus L.). Plant Breed (under review)

  • Shimomura K, Fukino N, Sugiyama M, Kawazu Y, Sakata Y, Yoshioka Y (2017) Quantitative trait locus analysis of cucumber fruit morphological traits based on image analysis. Euphytica 213:138

    Google Scholar 

  • Sinnott EW (1922) Inheritance of fruit shapes in Curcurbita pepo. I. Botanical Gazette 74:95–103

    Google Scholar 

  • Sinnott EW (1927) A factorial analysis of certain shape characters in squash fruits. Am Nat 61:334–344

    Google Scholar 

  • Sinnott EW (1931) The independence of genetic factors governing size and shape. J Hered 22:381–387

    Google Scholar 

  • Sinnott EW (1935) Evidence for the existence of genes controlling shape. Genetics 20:12–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinnott EW (1936) A developmental analysis of inherited shape differences in cucurbit fruits. Am Nat 70:245–254

    Google Scholar 

  • Sinnott EW (1939) A developmental analysis of the relation between cell size and fruit size in cucurbits. Am J Bot 26:179–189

    Google Scholar 

  • Sinnott EW (1945) The relation of growth to size in cucurbit fruits. Am J Bot 32:439–446

    Google Scholar 

  • Sinnott EW (1958) The genetic basis of organic form. Ann New York Acad Sci 71:1223–1233

    CAS  Google Scholar 

  • Sinnott EW, Durham GB (1922) Inheritance in the summer squash. J Hered 13:177–186

    Google Scholar 

  • Sinnott EW, Durham GB (1929) Developmental history of the fruit in lines of Cucurbita pepo differing in fruit shape. Bot Gaz 87:411–421

    Google Scholar 

  • Sinnott EW, Hammond D (1930) Factorial balance in the determination of fruit shape in Curcurbita. Am Nat 64:509–524

    Google Scholar 

  • Smith OS, Lower RL, Moll RH (1978) Estimates of heritabilities and variance components in pickling cucumber. J Am Soc Hortic Sci 103:222–225

    Google Scholar 

  • Strefeler MS, Wehner TC (1986) Estimates of heritabilities and genetic variances of three yield- and five quality traits in three fresh-market cucumber populations. J Am Soc Hortic Sci 111:599–605

    Google Scholar 

  • Sun H, Wu S, Zhang G et al (2017) Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Mol Plant 10:1293–1306

    CAS  PubMed  Google Scholar 

  • Switzenberg JA, Beaudry RM, Grumet R (2015) Effect of CRC:etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res 24:497–507

    CAS  PubMed  Google Scholar 

  • Tan J, Tao Q, Niu H, Zhang Z, Li D, Gong Z, Weng Y, Li Z (2015) A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.). Theor Appl Genet 128:2483–2493

    CAS  PubMed  Google Scholar 

  • Tanaka T, Wimol S, Mizutani T (1995) Inheritance of fruit shape and seed size of watermelon. J Jpn Soc Hortic Sci 64:543–548

    Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomason Y, Nimmakayala P, Levi A, Reddy UK (2013) Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breeding 31:829–841

    CAS  Google Scholar 

  • Urasaki N, Takagi H, Natsume S et al (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24:51–58

    CAS  PubMed  Google Scholar 

  • van der Knaap E, Ostergaard L (2018) Shaping a fruit: developmental pathways that impact growth patterns. Semin Cell Devl Biol 79:27–36

    Google Scholar 

  • van der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10:248

    PubMed  PubMed Central  Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH et al (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    PubMed  PubMed Central  Google Scholar 

  • Wall JR (1967) Correlated inheritance of sex expression and fruit in Cucumis. Euphytica 16:199–208

    Google Scholar 

  • Wang ZS, Xiang CP (2013) Genetic mapping of QTLs for horticulture traits in a F2–3 population of bitter gourd (Momordica charantia L.). Euphytica 193:235–250

    CAS  Google Scholar 

  • Wang M, Liu SL, Zhang SP, Miao H, Wang Y, Tian GL, Lu HW, Gu XF (2014) Quantitative trait loci associated with fruit length and stalk length in cucumber using RIL population. Acta Botanica Boreali-Occident Sinica 34:1764–1770 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Wang YX, Xiong GS, Hu J et al (2015) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948

    CAS  PubMed  Google Scholar 

  • Wang S, Li S, Liu Q et al (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–954

    CAS  PubMed  Google Scholar 

  • Wang SC, Chang Y, Ellis B (2016) Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators. Front Plant Sci 7:417

    PubMed  PubMed Central  Google Scholar 

  • Wang YH, VandenLangenberg K, Wehner TC, Kraan PAG, Suelmann J, Zheng XY, Owens K, Weng Y (2016) QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129:1493–1505

    CAS  PubMed  Google Scholar 

  • Wang YH, Wu DH, Huang JH, Tsao SJ, Hwu KK, Feng H (2016) Mapping quantitative trait loci for fruit traits and powdery mildew resistance in melon (Cucumis melo). Bot Stud 57:19

    PubMed  PubMed Central  Google Scholar 

  • Wang LN, Cao CX, Zheng SS, Zhang HY, Liu PJ, Ge Q, Li JR, Ren ZH (2017) Transcriptomic analysis of short-fruit 1 (sf1) reveals new insights into the variation of fruit-related traits in Cucumis sativus. Sci Rep UK 7:2950

    Google Scholar 

  • Weetman LM (1937) Inheritance and correlation of shape, size and color in the watermelon, Citrullus vulgaris Schrad. Res Bull 20:224–256

    Google Scholar 

  • Wehner TC, Shetty NV, Elmstron GW (2001) Breeding and seed production. In: Maynard DN (ed) Watermelons: characteristics, production, and marketing. ASHS Press, Alexandria, pp 27–73

    Google Scholar 

  • Wei QZ, Wang YZ, Qin XD, Zhang YX, Zhang ZT, Wang J, Li J, Lou QF, Chen JF (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics 15:1158

    PubMed  PubMed Central  Google Scholar 

  • Wei QZ, Fu WY, Wang YZ, Qin XD, Wang J, Li J, Lou QF, Chen JF (2016) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep UK 6:27496

    CAS  Google Scholar 

  • Weng Y (2019) Cucumis sativus: chromosome evolution, domestication, and genetic diversity: implications for cucumber breeding. Plant Breeding Review (submitted)

  • Weng YQ, Colle M, Wang YH, Yang LM, Rubinstein M, Sherman A, Ophir R, Grumet R (2015) QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet 128:1747–1763

    CAS  PubMed  Google Scholar 

  • Whitaker TW (1932) Fertile gourd-pumpkin hybrids. J Hered 23:427–430

    Google Scholar 

  • Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E (2011) SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157:1175–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Shamimuzzaman M, Sun H et al (2017) The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ring-spot virus resistance locus. Plant J 92:963–975

    CAS  PubMed  Google Scholar 

  • Wu S, Zhang BY, Keyhaninejad N et al (2018) Tomato reveals a common mechanism underlying morphological diversification in domesticated plants. Nat Commun 9:4734

    PubMed  PubMed Central  Google Scholar 

  • Xanthopoulou A, Ganopoulos I, Psomopoulos F, Manioudaki M, Moysiadis T, Kapazoglou A, Osathanunkul M, Michailidou S, Kalivas A, Tsaftaris A, Nianiou-Obeidat I, Madesis P (2017) De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers. Gene 622:50–66

    CAS  PubMed  Google Scholar 

  • Xin TG, Zhang Z, Li S, Zhang S, Li Q, Zhang ZH, Huang SW, Yang XY (2019) Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell 31:1063–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Xu S, Wu X, Tao Y, Wang B, Wang S, Qin D, Lu Z, Li G (2014) Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd. Plant J 77:430–442

    CAS  PubMed  Google Scholar 

  • Xu C, Liberatore KL, MacAlister CA et al (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47:784–792

    CAS  PubMed  Google Scholar 

  • Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ, Jiang JM, Weng YQ (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    CAS  PubMed  Google Scholar 

  • Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ (2013) Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. J Exp Bot 64:4541–4557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LM, Koo DH, Li DW et al (2014) Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 77:16–30

    CAS  PubMed  Google Scholar 

  • Yang LM, Liu HQ, Zhao JY, Pan YP, Cheng SY, Lietzow CD, Wen CL, Zhang XL, Weng Y (2018) LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. Plant J 95:834–847

    CAS  Google Scholar 

  • Yuan XJ, Pan JS, Cai R et al (2008) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    CAS  Google Scholar 

  • Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201

    CAS  PubMed  Google Scholar 

  • Zhang J, Shi JT, Ji GJ, Zhang HY, Gong GY, Guo SG, Ren Y, Fan JG, Tan SW, Xu Y (2017) Modulation of sex expression in four forms of watermelon by gibberellin, ethephone and silver nitrate. Hort Plant J 3:91–100

    Google Scholar 

  • Zhao JY, Jiang L, Che G, Pan YP, Li YQ, Hou Y, Zhao WS, Zhong YT, Ding L, Yan SS, Sun CZ, Liu RY, Yan LY, Wu T, Li XX, Weng Y, Zhao XL (2019) A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell. https://doi.org/10.1105/tpc.18.00905

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong YJ, Zhou YY, Li JX, Yu T, Wu TQ, Luo JN, Luo SB, Huang HX (2017) A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci RepUK 7:12785

    Google Scholar 

  • Zhou Y, Miao J, Gu HY et al (2015) Natural variations in SLG7 regulate grain shape in rice. Genetics 201:1591–1599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu WY, Huang L, Chen L et al (2016) A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front Plant Sci 7:437

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize for not being able to include all QTL mapping studies in cucurbit crops in this review. This research was supported by the Agriculture and Food Research Initiative Competitive Grants under award numbers 2015–51181-24285 and 2017–67013-26195 from the US Department of Agriculture National Institute of Food and Agriculture (to Y. Weng). FL’s work was supported by the China Agriculture Research System Program (CARS-26–02). USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

YP and YQW conducted literature review and wrote the manuscript. YHW performed comparative bioinformatics analysis of the data. CM, SL, MG and FL helped review of melon and watermelon data. All authors reviewed and approved the final submission.

Corresponding author

Correspondence to Yiqun Weng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Albrecht E. Melchinger .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1199 kb)

Supplementary file2 (PDF 4785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Wang, Y., McGregor, C. et al. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133, 1–21 (2020). https://doi.org/10.1007/s00122-019-03481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03481-3

Navigation