Skip to main content

Advertisement

Log in

Genome-based breeding approaches in major vegetable crops

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Vegetable crops are major nutrient sources for humanity and have been well-cultivated since thousands of years of domestication. With the rapid development of next-generation sequencing and high-throughput genotyping technologies, the reference genome of more than 20 vegetables have been well-assembled and published. Resequencing approaches on large-scale germplasm resources have clarified the domestication and improvement of vegetable crops by human selection; its application on genetic mapping and quantitative trait locus analysis has led to the discovery of key genes and molecular markers linked to important traits in vegetables. Moreover, genome-based breeding has been utilized in many vegetable crops, including Solanaceae, Cucurbitaceae, Cruciferae, and other families, thereby promoting molecular breeding at a single-nucleotide level. Thus, genome-wide SNP markers have been widely used, and high-throughput genotyping techniques have become one of the most essential methods in vegetable breeding. With the popularization of gene editing technology research on vegetable crops, breeding efficiency can be rapidly increased, especially by combining the genomic and variomic information of vegetable crops. This review outlines the present genome-based breeding approaches used for major vegetable crops to provide insights into next-generation molecular breeding for the increasing global population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    CAS  PubMed  Google Scholar 

  • Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F et al (2015) The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27:954–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballester AR, Molthoff J, de Vos R, Hekkert B, Orzaez D, Fernandez-Moreno JP et al (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bannoud F, Ellison S, Paolinelli M, Horejsi T, Senalik D, Fanzone M et al (2019) Dissecting the genetic control of root and leaf tissue-specific anthocyanin pigmentation in carrot (Daucus carota L.). Theor Appl Genet 132:2485–2507

    CAS  PubMed  Google Scholar 

  • Barrera-Redondo J, Ibarra-Laclette E, Vazquez-Lobo A, Gutierrez-Guerrero YT, Sanchez de la Vega G, Pinero D et al (2019) The genome of Cucurbita argyrosperma (Silver-Seed Gourd) reveals faster rates of protein-coding gene and long noncoding RNA turnover and neofunctionalization within Cucurbita. Mol Plant 12:506–520

    CAS  PubMed  Google Scholar 

  • Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borovsky Y, Monsonego N, Mohan V, Shabtai S, Kamara I, Faigenboim A et al (2019) The zinc-finger transcription factor CcLOL1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. Plant J 99:41–45

    CAS  PubMed  Google Scholar 

  • Branham SE, Patrick Wechter W, Lambel S, Massey L, Ma M, Fauve J et al (2018) QTL-seq and marker development for resistance to Fusarium oxysporum f. sp. niveum race 1 in cultivated watermelon. Mol Breed 38:139

    Google Scholar 

  • Cai C, Wang X, Liu B, Wu J, Liang J, Cui Y et al (2017) Brassica rapa Genome 2.0: a reference upgrade through sequence re-assembly and gene re-annotation. Mol Plant 10:649–651

    CAS  PubMed  Google Scholar 

  • Cambiaso V, Pratta GR, Pereira da Costa JH, Zorzoli R, Francis DM, Rodríguez GR (2019) Whole genome re-sequencing analysis of two tomato genotypes for polymorphism insight in cloned genes and a genetic map construction. Sci Hortic 247:58–66

    CAS  Google Scholar 

  • Cao W, Du Y, Wang C, Xu L, Wu T (2018) Cscs encoding chorismate synthase is a candidate gene for leaf variegation mutation in cucumber. Breed Sci 68:571–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary J, Alisha A, Bhatt V, Chandanshive S, Kumar N, Mir Z et al (2019) Mutation breeding in tomato: advances, applicability and challenges. Plants 8:128

    CAS  PubMed Central  Google Scholar 

  • Chen C, Liu M, Jiang L, Liu X, Zhao J, Yan S et al (2014) Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). J Exp Bot 65:4943–4958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Fu B, Pan Y, Zhang C, Wen H, Weng Y et al (2017) Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber. Theor Appl Genet 130:1549–1558

    CAS  PubMed  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas Genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    CAS  PubMed  Google Scholar 

  • Cheng Q, Wang P, Liu J, Wu L, Zhang Z, Li T et al (2018) Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L. Theor Appl Genet 131:1861–1872

    CAS  PubMed  Google Scholar 

  • Corem S, Doron-Faigenboim A, Jouffroy O, Maumus F, Arazi T, Bouche N (2018) Redistribution of CHH methylation and small interfering RNAs across the genome of tomato ddm1 mutants. Plant Cell 30:1628–1644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dou J, Lu X, Ali A, Zhao S, Zhang L, He N, Liu W (2018a) Genetic mapping reveals a marker for yellow skin in watermelon (Citrullus lanatus L.). PLoS ONE 13:e0200617

    PubMed  PubMed Central  Google Scholar 

  • Dou J, Zhao S, Lu X, He N, Zhang L, Ali A et al (2018b) Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet 131:947–958

    CAS  PubMed  Google Scholar 

  • FAO (1990) FAOSTAT. http://www.fao.org/faostat/en/

  • FAO (2017) FAOSTAT. http://www.fao.org/faostat/en/

  • Fernandez-Moreno JP, Tzfadia O, Forment J, Presa S, Rogachev I, Meir S et al (2016) Characterization of a new pink-fruited tomato mutant results in the identification of a null allele of the SlMYB12 transcription factor. Plant Physiol 171:1821–1836

    PubMed  PubMed Central  Google Scholar 

  • Fu W, Ye X, Ren J, Li Q, Du JT, Hou AL et al (2019) Fine mapping of lcm1, a gene conferring chlorophyll-deficient golden leaf in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Breed 39:52

    Google Scholar 

  • Gao M, Hu L, Li Y, Weng Y (2016) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theor Appl Genet 129:1961–1973

    CAS  PubMed  Google Scholar 

  • Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM et al (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51:1044–1051

    CAS  PubMed  Google Scholar 

  • Garcia V, Bres C, Just D, Fernandez L, Tai FW, Mauxion JP et al (2016) Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nat Protoc 11:2401–2418

    CAS  PubMed  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golicz A, Bayeret P, Barker G, Edger P, Kim H, Martinez P et al (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    CAS  PubMed  Google Scholar 

  • Guo G, Wang S, Liu J, Pan B, Diao W, Ge W, Gao C, Snyder JC (2017) Rapid identification of QTLs underlying resistance to Cucumber mosaic virus in pepper (Capsicum frutescens). Theor Appl Genet 130:41–52

    PubMed  Google Scholar 

  • Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK et al (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J 16:1546–1558

    CAS  PubMed Central  Google Scholar 

  • Hao N, Du Y, Li H, Wang C, Wang C, Gong S et al (2018) CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumis sativus L.). Theor Appl Genet 131:1659–1669

    CAS  PubMed  Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A et al (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative Solanum species indigenous to the old world. DNA Res 21:649–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Li D, Liu X, Qi J, Gao D, Zhao S et al (2017) Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 10:1575–1578

    CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  PubMed  Google Scholar 

  • Huang Y, Cao H, Yang L, Chen C, Shabala L, Xiong M et al (2019) Tissue-specific respiratory burst oxidase homologue-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. J Exp Bot. https://doi.org/10.1093/jxb/erz328

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Kim Y, Han J, Nou IS (2016) Orange color is associated with CYC-B expression in tomato fleshy fruit. Mol Breed 36:42

    Google Scholar 

  • Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128:1329–1342

    PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    CAS  PubMed  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    CAS  PubMed  Google Scholar 

  • Jian W, Cao H, Yuan S, Liu Y, Lu J, Lu W et al (2019) SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic Res 6:22

    PubMed  PubMed Central  Google Scholar 

  • Jiang H, Tian H, Yan C, Jia L, Wang Y, Wang M et al (2019) RNA-seq analysis of watermelon (Citrullus lanatus) to identify genes involved in fruit cracking. Sci Hortic 248:248–255

    CAS  Google Scholar 

  • Khan MZ, Zaidi SS, Amin I, Mansoor S (2019) A CRISPR way for fast-forward crop domestication. Trends Plant Sci 24:293–296

    CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    CAS  PubMed  Google Scholar 

  • Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT et al (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18:210

    PubMed  PubMed Central  Google Scholar 

  • Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y et al (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreplak J, Madoui MA, Capal P, Novak P, Labadie K, Aubert G et al (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51:1411–1422

    CAS  PubMed  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    PubMed  PubMed Central  Google Scholar 

  • Lee J (2019) Development and evolution of molecular markers and genetic maps in Capsicum species. In: Ramchiary N, Kole C (eds) The Capsicum genome. Springer, Cham, pp 85–103

    Google Scholar 

  • Lee YP, Cho Y, Kim S (2014) A high-resolution linkage map of the Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility in radish (Raphanus sativus L.) produced by a combination of bulked segregant analysis and RNA-Seq. Theor Appl Genet 127:2243–2252

    CAS  PubMed  Google Scholar 

  • Leisner CP, Hamilton JP, Crisovan E, Manrique-Carpintero NC, Marand AP, Newton L et al (2018) Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J 94:562–570

    CAS  PubMed  Google Scholar 

  • Li Y, Wen C, Weng Y (2013) Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet 126:2187–2196

    CAS  PubMed  Google Scholar 

  • Li S, Pan Y, Wen C, Li Y, Liu X, Zhang X et al (2016) Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber. Theor Appl Genet 129:1007–1022

    PubMed  Google Scholar 

  • Li B, Zhao Y, Zhu Q, Zhang Z, Fan C, Amanullah S, Gao P, Luan F (2017) Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Sci Hortic 220:160–167

    CAS  Google Scholar 

  • Li R, Fu D, Zhu B, Luo Y, Zhu H (2018) CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J 94:513–524

    CAS  PubMed  Google Scholar 

  • Liang D, Chen M, Qi X, Xu Q, Zhou F, Chen X (2016) QTL mapping by SLAF-seq and expression analysis of candidate genes for aphid resistance in cucumber. Front Plant Sci 7:1000

    PubMed  PubMed Central  Google Scholar 

  • Lin T, Wang S, Zhong Y, Gao D, Cui Q, Chen H (2016) A truncated F-box protein confers the dwarfism in cucumber. J Genet Genomics 43:223–226

    PubMed  Google Scholar 

  • Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7:e36406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    CAS  PubMed  Google Scholar 

  • Liu L, Sun T, Liu X, Guo Y, Huang X, Gao P, Wang X (2019a) Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.). Euphytica 215:20

    Google Scholar 

  • Liu G, Zhao T, You X, Jiang J, Li J, Xu X (2019b) Molecular mapping of the Cf-10 gene by combining SNP/InDel-index and linkage analysis in tomato (Solanum lycopersicum). BMC Plant Biol 19:15

    PubMed  PubMed Central  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q et al (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499

    PubMed  Google Scholar 

  • Lun Y, Wang X, Zhang C, Yang L, Gao D, Chen H et al (2015) A CsYcf54 variant conferring light green coloration in cucumber. Euphytica 208:509–517

    Google Scholar 

  • Ma C, Liu M, Li Q, Si J, Ren X, Song H (2019) Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Hortic Plant J 5:164–169

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Moghe GD, Hufnagel DE, Tang H, Xiao Y, Dworkin I, Town CD et al (2014) Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species. Plant Cell 26:1925–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Marti-Gomez C et al (2018) De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J 16:1161–1171

    CAS  PubMed  Google Scholar 

  • Nimmakayala P, Abburi VL, Bhandary A, Abburi L, Vajja VG, Reddy R et al (2014) Use of VeraCode 384-plex assays for watermelon diversity analysis and integrated genetic map of watermelon with single nucleotide polymorphisms and simple sequence repeats. Mol Breed 34:537–548

    CAS  Google Scholar 

  • Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B et al (2016) Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci Rep 6:38081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI et al (2011) Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol 157:405–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ou L, Li D, Lv J, Chen W, Gao H, Zeng Q et al (2018) Pan-genome of cultivated pepper (Capsicum) and its use in gene presence–absence variation analyses. New Phytol 220:360–363

    PubMed  Google Scholar 

  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paudel L, Clevenger J, McGregor C (2019) Chromosomal locations and interactions of four loci associated with seed coat color in watermelon. Front Plant Sci 10:788

    PubMed  PubMed Central  Google Scholar 

  • Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Google Scholar 

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X et al (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    CAS  PubMed  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Liu ZY, Du JT, Fu W, Hou AL, Feng H (2019) Fine-mapping of a gene for the lobed leaf, BoLl, in ornamental kale (Brassica oleracea L. var. acephala). Mol Breed 39:40

    Google Scholar 

  • Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C et al (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 8:14953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez GR, Kim HJ, van der Knaap E (2013) Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity (Edinb) 111:256–264

    CAS  Google Scholar 

  • Rong F, Chen F, Huang L, Zhang J, Zhang C, Hou D et al (2019) A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). Theor Appl Genet 132:113–123

    CAS  PubMed  Google Scholar 

  • Ruangrak E, Su X, Huang Z, Wang X, Guo Y, Du Y et al (2018) Fine mapping of a major QTL controlling early flowering in tomato using QTL-seq. Can J Plant Sci 98:672–682

    CAS  Google Scholar 

  • Saidou AA, Thuillet AC, Couderc M, Mariac C, Vigouroux Y (2014) Association studies including genotype by environment interactions: prospects and limits. BMC Genet 15:3

    PubMed  PubMed Central  Google Scholar 

  • Schrager-Lavelle A, Gath NN, Devisetty UK, Carrera E, Lopez-Diaz I, Blazquez MA et al (2019) The role of a class III gibberellin 2-oxidase in tomato internode elongation. Plant J 97:603–615

    CAS  PubMed  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2013) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Google Scholar 

  • Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H et al (2014) Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346:1084–1088

    CAS  PubMed  Google Scholar 

  • Shang J, Li N, Li N, Xu Y, Ma S, Wang J (2016) Construction of a high-density genetic map for watermelon (Citrullus lanatus L.) based on large-scale SNP discovery by specific length amplified fragment sequencing (SLAF-seq). Sci Hortic 203:38–46

    CAS  Google Scholar 

  • Shu J, Liu Y, Zhang L, Li Z, Fang Z, Yang L et al (2018) QTL-seq for rapid identification of candidate genes for flowering time in broccoli x cabbage. Theor Appl Genet 131:917–928

    CAS  PubMed  Google Scholar 

  • Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ et al (2017) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169:1142–1155

    CAS  PubMed  Google Scholar 

  • Sun H, Wu S, Zhang G, Jiao C, Guo S, Ren Y et al (2017) Karyotype stability and unbiased fractionation in the Paleo-Allotetraploid Cucurbita genomes. Mol Plant 10:1293–1306

    CAS  PubMed  Google Scholar 

  • Sun D, Wang C, Zhang X, Zhang W, Jiang H, Yao X et al (2019a) Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Hortic Res 6:82

    PubMed  PubMed Central  Google Scholar 

  • Sun X, Shu J, Ali Mohamed AM, Deng X, Zhi X, Bai J et al (2019b) Identification and characterization of EI (Elongated Internode) gene in tomato (Solanum lycopersicum). Int J Mol Sci 20:2204

    CAS  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    CAS  PubMed  Google Scholar 

  • Tan C, Liu Z, Huang S, Li C, Ren J, Tang X et al (2018) Pectin methylesterase inhibitor (PMEI) family can be related to male sterility in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics 293:343–357

    CAS  PubMed  Google Scholar 

  • Tanksley S, Ganal M, Prince JP, de Vicente MC, Bonierbale MW, Broun P et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:e5

    PubMed  PubMed Central  Google Scholar 

  • Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H et al (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36:399–406

    CAS  PubMed  Google Scholar 

  • Tian S, Jiang L, Cui X, Zhang J, Guo S, Li M et al (2018) Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep 37:1353–1356

    CAS  PubMed  Google Scholar 

  • Tomato Genome C (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Google Scholar 

  • Tomlinson L, Yang Y, Emenecker R, Smoker M, Taylor J, Perkins S et al (2019) Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnol J 17:132–140

    CAS  PubMed  Google Scholar 

  • Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507

    PubMed  PubMed Central  Google Scholar 

  • Urasaki N, Takagi H, Natsume S, Uemura A, Taniai N, Miyagi N et al (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24:51–58

    CAS  PubMed  Google Scholar 

  • Vlasova A, Capella-Gutierrez S, Rendon-Anaya M, Hernandez-Onate M, Minoche AE, Erb I et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    CAS  PubMed  Google Scholar 

  • Wang HS, Yu C, Tang XF, Zhu ZJ, Ma NN, Meng QW (2014) A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Rep 33:131–142

    CAS  PubMed  Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J et al (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65:8674–8682

    CAS  PubMed  Google Scholar 

  • Wang C, Li H, Li Y, Meng Q, Fei X, Xu YJ et al (2019) Genetic characterization and fine mapping BrCER4 in involved cuticular wax formation in purple cai-tai (Brassica rapa L. var. purpurea). Mol Breeding 39:12

    Google Scholar 

  • Win KT, Zhang C, Silva RR, Lee JH, Kim YC, Lee S (2019) Identification of quantitative trait loci governing subgynoecy in cucumber. Theor Appl Genet 132:1505–1521

    CAS  PubMed  Google Scholar 

  • Wu T, Qin Z, Zhou X, Feng Z, Du Y (2010) Transcriptome profile analysis of floral sex determination in cucumber. J Plant Physiol 167:905–913

    CAS  PubMed  Google Scholar 

  • Wu S, Shamimuzzaman M, Sun H, Salse J, Sui X, Wilder A et al (2017) The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ring-spot virus resistance locus. Plant J 92:963–975

    CAS  PubMed  Google Scholar 

  • Wu S, Wang X, Reddy U, Sun H, Bao K, Gao L et al (2019) Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. Plant Biotechnol J 17(12):2246–2258. https://doi.org/10.1111/pbi.13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    PubMed  Google Scholar 

  • Xin T, Zhang Z, Li S, Zhang S, Li Q, Zhang Z et al (2019) Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell 31:1063–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L et al (2014) A high-density genetic map of cucumber derived from Specific Length Amplified Fragment sequencing (SLAF-seq). Front Plant Sci 5:768

    PubMed  Google Scholar 

  • Xu X, Lu L, Zhu B, Xu Q, Qi X, Chen X (2015) QTL mapping of cucumber fruit flesh thickness by SLAF-seq. Sci Rep 5:15829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Chao J, Cheng X, Wang R, Sun B, Wang H et al (2016) Mapping of a novel race specific resistance gene to phytophthora root rot of pepper (Capsicum annuum) using bulked segregant analysis combined with specific length amplified fragment sequencing strategy. PLoS ONE 11:e0151401

    PubMed  PubMed Central  Google Scholar 

  • Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C et al (2017) Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8:15275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wang C, Cao W, Zhou S, Wu T (2018) CLAVATA1-type receptor-like kinase CsCLAVATA1 is a putative candidate gene for dwarf mutation in cucumber. Mol Genet Genom 293:1393–1405

    CAS  Google Scholar 

  • Xu ZS, Yang QQ, Feng K, Xiong AS (2019) Changing carrot color: insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiol. https://doi.org/10.1104/pp.19.00523

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan C, An G, Zhu T, Zhang W, Zhang L, Peng L, Chen J, Kuang H (2019) Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theor Appl Genet 132:895–906

    CAS  PubMed  Google Scholar 

  • Yang X, Li Y, Zhang W, He H, Pan J, Cai R (2013) Fine mapping of the uniform immature fruit color gene u in cucumber (Cucumis sativus L.). Euphytica 196:341–348

    Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B et al (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    CAS  PubMed  Google Scholar 

  • Yang Y, Zhu G, Li R, Yan S, Fu D, Zhu B et al (2017) The RNA editing factor SlORRM4 is required for normal fruit ripening in tomato. Plant Physiol 175:1690–1702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow CD et al (2018) LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. Plant J 95:834–847

    CAS  Google Scholar 

  • Yang J, Zhang J, Han R, Zhang F, Mao A, Luo J et al (2019) Target SSR-Seq: a novel SSR genotyping technology associate with perfect SSRs in genetic analysis of cucumber varieties. Front Plant Sci 10:531

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhao J, Xu Y, Liang J, Chang P, Yan F, Li M, Liang Y, Zou Z (2015) Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front Plant Sci 6:1042

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yi H, Wu M, Zhang Y, Zhang X, Li M, Wang G (2016) Mapping the flavor contributing traits on ‘Fengwei Melon’ (Cucumis melo L.) chromosomes using parent resequencing and super bulked-segregant analysis. PLoS ONE 11:e0148150

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Su W, Tao R, Zhang W, Chen J, Wu P et al (2017) RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nat Commun 8:2264

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F et al (2018a) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5:50

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang G, Chen B, Du H, Zhang F, Zhang H et al (2018b) Candidate genes for first flower node identified in pepper using combined SLAF-seq and BSA. PLoS ONE 13:e0194071

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang B, Wang S, Lin T, Yang L, Zhao Z, Zhang Z, Huang S, Yang X (2019) Genome-wide target mapping shows histone deacetylase complex 1 regulates cell proliferation in cucumber fruit. Plant Physiol. https://doi.org/10.1104/pp.19.00532

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Xu Y, Ding Q, Huang X, Zhang Y, Zou Z et al (2016) Association mapping of main tomato fruit sugars and organic acids. Front Plant Sci 7:1286

    PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Wu S, Bai Y, Sun H, Jiao C, Guo S et al (2019) Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Res 47:D1128–D1136

    PubMed  Google Scholar 

  • Zhou Q, Wang S, Hu B, Chen H, Zhang Z, Huang S (2015) An ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 gene mutation confers light green peel in cucumber. J Integr Plant Biol 57:936–942

    CAS  PubMed  Google Scholar 

  • Zhu WY, Huang L, Chen L, Yang JT, Wu JN, Qu ML et al (2016) A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on Specific Length Amplified Fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front Plant Sci 7:437

    PubMed  PubMed Central  Google Scholar 

  • Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C et al (2018) Rewiring of the fruit metabolome in tomato breeding. Cell 172(249–261):e212

    Google Scholar 

  • Zhu G, Gou J, Klee H, Huang S (2019) Next-Gen approaches to flavor-related metabolism. Annu Rev Plant Biol 70:187–212

    CAS  PubMed  Google Scholar 

  • Zsogon A, Cermak T, Naves ER, Notini MM, Edel KH, Weinl S et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216

    CAS  Google Scholar 

Download references

Funding

This study was supported by The National Key Research and Development Program of China (2018YFD1000800), National Natural Science Foundation of China (31972429, 31972407, 31701934, 31801887), and Beijing Municipal National Science Foundation (6172014).

Author information

Authors and Affiliations

Authors

Contributions

NH, CLW, and TW drafted the manuscript. NH, DGH, KH, YLD, JJY, JZ, CLW, and TW performed the text sections and edited the content.

Corresponding authors

Correspondence to Changlong Wen or Tao Wu.

Ethics declarations

Conflict of interest

All authors jointly state that there is no conflict of interest.

Additional information

Communicated by Kai Shi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, N., Han, D., Huang, K. et al. Genome-based breeding approaches in major vegetable crops. Theor Appl Genet 133, 1739–1752 (2020). https://doi.org/10.1007/s00122-019-03477-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03477-z

Navigation