Skip to main content
Log in

Association mapping of wheat Fusarium head blight resistance-related regions using a candidate-gene approach and their verification in a biparental population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Key message

Markers, located in Dicer1 and Ara6 genes, which are likely involved in cross-kingdom RNA trafficking, are associated with FHB resistance in GABI wheat population and were validated in biparental population.

Abstract

Association studies are a common approach to detect marker-trait associations for Fusarium head blight (FHB) resistance in wheat (Triticum aestivum), although verification of detected associations is exceptional. In the present study, candidate-gene association mapping (CG) of genes from silencing and secretory pathways, which may be involved in wheat resistance against FHB and cross-kingdom RNA trafficking, was performed. Fourteen markers, located in nine genes, were tested for association with FHB resistance in 356 lines from the GABI (genome analysis of the biological system of plants) wheat population. Three markers located in the genes Dicer1 and Ara6 were shown to be significantly associated with the studied trait. Verification of this finding was performed using the recombinant inbred lines (RILs) population ‘Apache × Biscay’, segregating for four of our 14 selected markers. We could show association of the Ara6 marker with plant height as well as association with FHB resistance for three markers located in Rab5-like GTPase gene Ara6 and Dicer1. These results confirmed the trait-marker associations detected also in the CG approach. Gene products of the associated genes are involved in response of the plant to pathogens, plant metabolism and may be involved in cross-kingdom RNA trafficking efficiency. The markers detected in the GABI wheat population, which were also validated in the biparental population, can potentially be used in wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amos W, Driscoll E, Hoffman JI (2011) Candidate genes versus genome-wide associations: which are better for detecting genetic susceptibility to infectious disease? Proc Biol Sci 278(1709):1183–1188

    CAS  PubMed  Google Scholar 

  • Arruda MP, Brown P, Brown-Guedira G, Krill AM, Thurber C, Merrill KR, Foresman BJ, Kolb FL (2016) Genome-wide association mapping of Fusarium head blight resistance in wheat using genotyping-by-sequencing. Plant Genome. https://doi.org/10.3835/plantgenome2015.04.0028

    Article  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Google Scholar 

  • Bernardo AN, Ma H, Zhang D, Bai G (2012) Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Mol Breed 29:477–488

    Google Scholar 

  • Böhlenius H, Mørch SM, Godfrey D, Nielsen ME, Thordal-Christensen H (2010) The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in Barley. Plant Cell 22(11):3831–3844

    PubMed  PubMed Central  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    CAS  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16(12):727–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bozkurt TO, Richardson A, Dagdas YF, Mongrand S, Kamoun S, Raffaele S (2014) The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans. Plant Physiol 165(3):1005–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan SA, Blaxter M, Ivens A, Maizels RM (2014) Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 5:5488

    CAS  PubMed  Google Scholar 

  • Buerstmayr M, Buerstmayr H (2016) The semidwarfing alleles Rht-D1b and Rht-B1b show marked differences in their associations with anther-retention in wheat heads and with Fusarium head blight susceptibility. Phytopathology 106(12):1544–1552

    CAS  PubMed  Google Scholar 

  • Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P (2000) Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci 40:1012–1018

    Google Scholar 

  • Buerstmayr H, Bad T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128(1):1–26

    CAS  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360(6393):1126–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55

    PubMed  PubMed Central  Google Scholar 

  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23(17):2334–2336

    CAS  PubMed  Google Scholar 

  • Ding Y, Robinson DG, Jiang L (2014a) Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol 29:107–115

    CAS  PubMed  Google Scholar 

  • Ding Y, Wang J, Chun Lai JH, Ling Chan VH, Wang X, Cai Y, Tan X, Bao Y, Xia J, Robinson DG, Jiang L (2014b) Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell 25(3):412–426

    PubMed  PubMed Central  Google Scholar 

  • Du Y, Overdijk E, Berg JA, Govers F, Bouwmeester K (2018) Solanaceous exocyst subunits are involved in immunity to diverse plant pathogens. J Exp Bot 69(3):655–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa M, Hammond-Kosack KE, Solomon PS (2018) A review of wheat diseases—a field perspective. Mol Plant Pathol 19(6):1523–1536

    PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2017) The future of food and agriculture—trends and challenges. Rome

  • Frank M, Egile C, Dyachok J, Djakovic S, Nolasco M, Li R, Smith LG (2004) Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. Proc Natl Acad Sci USA 101(46):16379–16384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Luan Y-S (2015) Horizontal transfer of small RNAs to and from plants. Front Plant Sci 6:1113

    PubMed  PubMed Central  Google Scholar 

  • Hardham AR, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol 10(4):342–348

    CAS  PubMed  Google Scholar 

  • He Y, Zhang X, Zhang Y, Ahmad D, Wu L, Jiang P, Ma H (2018) Molecular characterization and expression of PFT, an FHB resistance gene at the Fhb1 QTL in wheat. Phytopathology 108(6):730–736

    CAS  PubMed  Google Scholar 

  • Herter CP, Ebmeyer E, Kollers S, Korzun V, Leiser WL, Würschum T, Miedaner T (2018) Rht24 reduces height in the winter wheat population ‘Solitar × Bussard’ without adverse effects on Fusarium head blight infection. Theor Appl Genet 131(6):1263–1272

    CAS  PubMed  Google Scholar 

  • Holland JB, Helland SJ, Sharapova N, Rhyne DC (2001) Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44(6):1065–1076

    CAS  PubMed  Google Scholar 

  • Huckelhoven R (2007) Transport and secretion in plant-microbe interactions. Curr Opin Plant Biol 10(6):573–579

    PubMed  Google Scholar 

  • Jia H, Zhou J, Xue S, Li G, Yan H, Ran C, Zhang Y, Shi J, Jia L, Wang X, Luo J, Ma Z (2018) A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J 6:48–59

    Google Scholar 

  • Jiang Y, Zhao Y, Rodemann B, Plieske J, Kollers S, Korzun V, Ebmeyer E, Argillier O, Hinze M, Ling J, Röder MS, Ganal MW, Mette MF, Reif JC (2015) Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Heredity (Edinb) 114(3):318–326

    CAS  Google Scholar 

  • Jiao J, Peng D (2018) Wheat microRNA1023 suppresses invasion of Fusarium graminearum via targeting and silencing FGSG_03101. J Plant Interact 13(1):514–521

    CAS  Google Scholar 

  • Jo BS, Choi SS (2015) Introns: the functional benefits of introns in genomes. Genom Inform 13(4):112–118

    Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013) Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS ONE 8(2):e57500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291

    CAS  PubMed  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosova K, Chrpova J, Sip V (2009) Cereal resistance to Fusarium head blight and possibilities of its improvement through breeding. Czech J Genet Plant Breed 45(3):87–105

    CAS  Google Scholar 

  • Lancashire PD, Bleiholder H, van den Boom T, Langelüddecke P, Stauss R, Weber E, Witzenberger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601

    Google Scholar 

  • Li Y, Sorefan K, Hemmann G, Bevan MW (2004) Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes. Plant Physiol 136(3):3616–3627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S et al (2019) Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet 51:1106–1112

    CAS  PubMed  Google Scholar 

  • Lüders T, Ahlemeyer J, Förster J et al (2016) Verification of marker–trait associations in biparental winter barley (Hordeum vulgare L.) DH populations. Mol Breed 36:14

    Google Scholar 

  • Machado AK, Brown NA, Urban M, Kanyuka K, Hammond-Kosack KE (2018) RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals. Pest Manag Sci 74(4):790–799

    CAS  PubMed  Google Scholar 

  • Majumdar R, Rajasekaran K, Cary JW (2017) RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front Plant Sci 8:200

    PubMed  PubMed Central  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif J (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed 28:647–655

    Google Scholar 

  • Miedaner T, Risser P, Paillard S, Schnurbusch T, Keller B, Hartl L et al (2012) Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol Breed 29:731–742

    CAS  Google Scholar 

  • Mosher RA, Baulcombe DC (2008) Bacterial pathogens encode suppressors of RNA-mediated silencing. Genome Biol 9(10):237

    PubMed  PubMed Central  Google Scholar 

  • Mukherjee D, Saha D, Acharya D, Mukherjee A, Chakraborty S, Ghosh TC (2018) The role of introns in the conservation of the metabolic genes of Arabidopsis thaliana. Genomics 110(5):310–317

    CAS  PubMed  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21(8):2194–2202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagawa S, Xu T, Yang Z (2010) RHO GTPase in plants: conservation and invention of regulators and effectors. Small GTPases 1(2):78–88

    PubMed  PubMed Central  Google Scholar 

  • Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J (2014) Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26(7):3062–3076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navara S, Smith KP (2014) Using near-isogenic barley lines to validate deoxynivalenol (DON) QTL previously identified through association analysis. Theor Appl Genet 127(3):633–645

    CAS  PubMed  Google Scholar 

  • Nielsen ME, Feechan A, Böhlenius H, Ueda T, Thordal-Christensen H (2012) Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc Natl Acad Sci USA 109(28):11443–11448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22(9):3130–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Opalski KS, Schultheiss H, Kogel KH, Hückelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. Plant J 41(2):291–303

    CAS  PubMed  Google Scholar 

  • Park E, Nedo A, Caplan JL, Dinesh-Kumar SP (2018) Plant-microbe interactions: organelles and the cytoskeleton in action. New Phytol 217(3):1012–1028

    PubMed  Google Scholar 

  • Pecenková T, Hála M, Kulich I, Kocourková D, Drdová E, Fendrych M, Toupalová H, Zársky V (2011) The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J Exp Bot 62(6):2107–2116

    PubMed  PubMed Central  Google Scholar 

  • Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48(12):1576–1580

    CAS  PubMed  Google Scholar 

  • Robinson DG, Hinz G, Holstein SEH (1998) The molecular characterization of transport vesicles. Plant Mol Biol 38(1–2):49–76

    CAS  PubMed  Google Scholar 

  • Robinson DG, Ding Y, Jiang L (2016) Unconventional protein secretion in plants: a critical assessment. Protoplasma 253(1):31–43

    CAS  PubMed  Google Scholar 

  • Scheuring D, Viotti C, Krüger F, Künzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson DG, Pimpl P, Schumacher K (2011) Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23(9):3463–3481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid S, Kim G, Johnson NR, Wafula E, Wang F, Coruh C, Bernal-Galeano V, Phifer T, de Pamphilis CW, Westwood JH, Axtell MJ (2018) MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553(7686):82–85

    CAS  PubMed  Google Scholar 

  • Sinha SK (2010) RNAi induced gene silencing in crop improvement. Physiol Mol Biol Plants 16(4):321–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayret H (2017) Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop Plant pathol 42:165

    Google Scholar 

  • Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick H, St Amand P, Yu J, Zhang Z, Bai G (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51(7):1099–1105

    CAS  PubMed  Google Scholar 

  • Tinker NA, Fortin MG, Mather DE (1993) Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet 85(8):976–984

    CAS  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    CAS  PubMed  Google Scholar 

  • van de Meene AM, Doblin MS, Bacic A (2017) The plant secretory pathway seen through the lens of the cell wall. Protoplasma 254(1):75–94

    PubMed  Google Scholar 

  • Venske E, Dos Santos RS, Farias DDR, Rother V, da Maia LC, Pegoraro C, Costa de Oliveira A (2019) Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: refining the current puzzle. Front Plant Sci 10:727

    PubMed  PubMed Central  Google Scholar 

  • Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805–811

    CAS  Google Scholar 

  • Wang F, Shang Y, Fan B, Yu JQ, Chen Z (2014a) Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense. PLoS Pathog 10(7):e1004243

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE et al (2014b) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Weiberg A, Lin F-M, Thomma BPHJ, Huang H-D, Jin H (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2:16151

    CAS  PubMed  Google Scholar 

  • Wang M, Thomas N, Jin H (2017) Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Curr Opin Plant Biol 38:133–141

    CAS  PubMed  Google Scholar 

  • Weiberg A, Jin H (2015) Small RNAs—the secret agents in the plant-pathogen interactions. Curr Opin Plant Biol 26:87–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie XZ, Wu NH (2002) Introns in higher plant genes. Chin Sci Bull 47:1409

    CAS  Google Scholar 

  • Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123(6):1055–1063

    PubMed  Google Scholar 

  • Yang L, Huang H (2014) Roles of small RNAs in plant disease resistance. J Integr Plant Biol 56:962–970

    CAS  PubMed  Google Scholar 

  • Yang L, Qin L, Liu G, Peremyslov VV, Dolja VV, Wei Y (2014) Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens. Proc Natl Acad Sci USA 111(38):13996–14001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zárský V, Kulich I, Fendrych M, Pečenková T (2013) Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol 16(6):726–733

    PubMed  Google Scholar 

  • Zhang B, Karnik R, Wang Y, Wallmeroth N, Blatt MR, Grefen C (2015) The Arabidopsis R-SNARE VAMP721 interacts with KAT1 and KC1K + channels to moderate K + current at the plasma membrane. Plant Cell 27(6):1697–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union in the Marie Sklodowska-Curie actions “CerealPATH” grant agreement No. 674964. The GABI Wheat consortium which originally put together the diverse variety panel and the phenotypes. Prof. Thomas Miedaner for providing FHB data for ‘Apache × Biscay’ population for two locations in year 2016 and for his help to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KMS-D wrote the first version of the manuscript; KMS-D and JCR wrote the final version of the manuscript; DN, AD; VK helped to improve the manuscript; PS, VK, SK, and JCR designed the study; KMS-D and JCR performed the analysis; SK and KMS-D collected data.

Corresponding author

Correspondence to Karolina Maria Słomińska-Durdasiak.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical statement

All experiments were performed under the current laws of Germany.

Additional information

Communicated by Hermann Buerstmayr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Słomińska-Durdasiak, K.M., Kollers, S., Korzun, V. et al. Association mapping of wheat Fusarium head blight resistance-related regions using a candidate-gene approach and their verification in a biparental population. Theor Appl Genet 133, 341–351 (2020). https://doi.org/10.1007/s00122-019-03463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03463-5

Navigation