Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 11, pp 3129–3141 | Cite as

Production of a complete set of wheat–barley group-7 chromosome recombinants with increased grain β-glucan content

  • Tatiana V. Danilova
  • Jesse Poland
  • Bernd FriebeEmail author
Original Article

Abstract

Key message

Wheat–barley group-7 recombinant chromosomes were selected using molecular cytogenetics and SNP markers; increased grain β-glucan content was observed in wheat plants with two and four copies of HvCslF6.

Abstract

The soluble dietary fiber (1–3)(1–4) mixed linked β-d-glucan from cereal grains is a valuable component of a healthy diet, which reduces risks of coronary disease and diabetes. Although wheat is an important cereal crop providing a substantial portion of daily calories and protein intake in the human diet, it has a low level of β-glucan. Owing to the plasticity of the polyploid wheat genome, agronomically important traits absent in the wheat primary gene pool can be introgressed from distant relatives. Barley (Hordeum vulgare L.) has a high grain β-glucan content. Earlier, we introgressed this trait into wheat in the form of whole arm compensating Robertsonian translocations (RobT) involving group-7 chromosomes of barley and all three sub-genomes of hexaploid wheat (Triticum aestivum L). In the presented research, we shortened the barley 7HL arms in these RobTs to small pericentromeric segments, using induced wheat–barley homoeologous recombination. The recombinants were selected using SNP markers and molecular cytogenetics. Plants, comprising barley cellulose synthase-like F6 gene (HvCslF6), responsible for β-glucan synthesis, had a higher grain β-glucan content than the wheat control. Three wheat–barley group-7 recombinant chromosomes involving the A, B and D sub-genomes laid the basis for a multiple-copy gene introgression to hexaploid wheat. It is hypothesized that further increases in the β-glucan content in wheat grain can be obtained by increasing the number of HvCslF6 copies through combining several recombinant chromosomes in one line. The wheat lines with four copies of HvCslF6 exceeded the β-glucan content of the lines with two copies.

Notes

Acknowledgements

We thank W. John Raupp for critical editorial review of the manuscript, Duane Wilson for technical assistance, Dr. Gengjun Chen for providing equipment for grain moisture measurement; Dr. Alina Akhunova for real time PCR and spectrophotometry equipment; Drs. Anita Dille and James Stack for providing growth chambers. This is contribution number 19-288-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, U.S.A.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2019_3411_MOESM1_ESM.pdf (172 kb)
Fig. S1 Karyotypes of plants, homozygous for recombinant, translocation chromosomes (pointed by arrows) and their combinations. a. T7AS·7HL-7AL, b. T7BS·7HL-7BL, c. T7DS·7HL-7DL d. T7AS·7ALdel·7HL, e. T7AS·7HL-7AL + RobT7BS·7HL, f. T7AS·7HL-7AL + RobT7DS·7HL. FGISH images: barley chromatin is green, (GAA)n repeat is white, pAs1 repeat is red, chromosomes counterstained with DAPI are blue. Bar = 10 μm

References

  1. Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C et al (2018) Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19:111CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beresford G, Stone BA (1983) (1-]3), (1-]4)-Beta-d-glucan content of triticum grains. J Cereal Sci 1:111–114CrossRefGoogle Scholar
  4. Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69:30–42CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, Fincher GB (2008) The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol 146:1821–1833CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burton RA, Collins HM, Kibble NAJ, Smith JA, Shirley NJ, Jobling SA, Henderson M, Singh RR, Pettolino F, Wilson SM, Bird AR, Topping DL, Bacic A, Fincher GB (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-beta-d-glucans and alters their fine structure. Plant Biotechnol J 9:117–135CrossRefPubMedPubMedCentralGoogle Scholar
  7. Collins HM, Burton RA, Topping DL, Liao ML, Bacic A, Fincher GB (2010) Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chem 87:272–282CrossRefGoogle Scholar
  8. Cseh A, Kruppa K, Molnar I, Rakszegi M, Dolezel J, Molnar-Lang M (2011) Characterization of a new 4BS.7HL wheat-barley translocation line using GISH, FISH, and SSR markers and its effect on the beta-glucan content of wheat. Genome 54:795–804CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cseh A, Soos V, Rakszegi M, Turkoesi E, Balazs E, Molnar-Lang M (2013) Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat beta-glucan content. Ann Appl Biol 163:142–150CrossRefGoogle Scholar
  10. Cui SW, Wu Y, Ding H (2013) The range of dietary fibre ingredients and a comparison of their technical functionality. Elsevier Science, ProQuest Ebook CentralCrossRefGoogle Scholar
  11. Curtis CA, Lukaszewski AJ, Chrzastek M (1991) Metaphase I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in common wheat. Genome 34:553–560CrossRefGoogle Scholar
  12. Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611CrossRefPubMedPubMedCentralGoogle Scholar
  13. Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730CrossRefPubMedPubMedCentralGoogle Scholar
  14. Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS (2017a) Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). Plant J 92:317–330CrossRefPubMedPubMedCentralGoogle Scholar
  15. Danilova TV, Zhang G, Liu W, Friebe B, Gill BS (2017b) Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor Appl Genet 130:549–556CrossRefPubMedPubMedCentralGoogle Scholar
  16. Danilova TV, Friebe B, Gill BS, Poland J, Jackson E (2018a) Development of a complete set of wheat-barley group-7 Robertsonian translocation chromosomes conferring an increased content of beta-glucan. Theor Appl Genet 131:377–388CrossRefPubMedPubMedCentralGoogle Scholar
  17. Danilova TV, Friebe B, Gill BS, Poland J, Jackson E (2018b) Chromosome rearrangements caused by double monosomy in wheat-barley group-7 substitution lines. Cytogenet Gen Res 154:45–55CrossRefGoogle Scholar
  18. Darrier B, Rimbert H, Balfourier F, Pingault L, Josselin AA, Servin B, Navarro J, Choulet F, Paux E, Sourdille P (2017) High-resolution mapping of crossover events in the hexaploid wheat genome suggests a universal recombination mechanism. Genetics 206:1373–1388CrossRefPubMedPubMedCentralGoogle Scholar
  19. Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680CrossRefPubMedPubMedCentralGoogle Scholar
  20. Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-d-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA 106:5996–6001CrossRefPubMedPubMedCentralGoogle Scholar
  21. FAO (2018) FAOSTAT. Food balance sheets. Crop production. http://www.fao.org/faostat/en/#compare (verified 25 June 2018). FAO, Rome, Italy
  22. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 91:59–87CrossRefGoogle Scholar
  23. Friebe B, Qi LL, Wilson DL, Chang ZJ, Selfers DL, Martin TJ, Fritz AK, Gill BS (2009) Wheat-Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci 49:1221–1226CrossRefGoogle Scholar
  24. Gutierrez-Gonzalez JJ, Mascher M, Poland J, Muehlbauer GJ (2019) Dense genotyping-by-sequencing linkage maps of two Synthetic W7984 × Opata reference populations provide insights into wheat structural diversity. Sci Rep-UK 9:1793CrossRefGoogle Scholar
  25. Han F, Ullrich SE, Chirat S, Menteur S, Jestin L, Sarrafi A, Hayes PM, Jones BL, Blake TK, Wesenberg DM, Kleinhofs A, Kilian A (1995) Mapping of beta-glucan content and beta-glucanase activity loci in barley grain and malt. Theor Appl Genet 91:921–927CrossRefPubMedPubMedCentralGoogle Scholar
  26. Havrlentova M, Kraic J (2006) Content of beta-d-glucan in cereal grains. J Food Nutr Res 45:97–103Google Scholar
  27. Higgins JD, Perry RM, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong SJ, Franklin FC (2012) Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. Plant Cell 24:4096–4109CrossRefPubMedPubMedCentralGoogle Scholar
  28. Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington JM, Booth A, Shirley N, Burton RA, Fincher GB, Waugh R (2014) A genome wide association scan for (1,3;1,4)-beta-glucan content in the grain of contemporary 2-row spring and winter barleys. BMC Genom 15:907CrossRefGoogle Scholar
  29. Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174CrossRefGoogle Scholar
  30. Jones E, Rybka K, Lukaszewski J (2002) The effect of a deficiency and a deletion on recombination in chromosome 1BL in wheat. Theor Appl Genet 104:1204–1208CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jordan KW, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J, Akhunova A, Blake NK, Pumphrey MO, Glover K, Dubcovsky J, Talbert L, Akhunov ED (2018) The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. Plant J 95:1039–1054CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C et al (2016) Ensembl Genomes 2016: more genomes, more complexity. Nucl Acids Res 44:D574–D580CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C et al (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucl Acids Res 46:D802–D808CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kim H-S, Park K-G, Baek S-B, Kim J-G (2011) Inheritance of (1–3)(1–4)-beta-d-glucan content in barley (Hordeum vulgare L.). J Crop Sci Biotechnol 14:239–245CrossRefGoogle Scholar
  37. Li JZ, Baga M, Rossnagel BG, Legge WG, Chibbar RN (2008) Identification of quantitative trait loci for beta-glucan concentration in barley grain. J Cereal Sci 48:647–655CrossRefGoogle Scholar
  38. Ling HQ, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y et al (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225CrossRefGoogle Scholar
  40. Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45CrossRefPubMedPubMedCentralGoogle Scholar
  41. Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y et al (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502CrossRefPubMedGoogle Scholar
  42. Manninen I, Schulman AH (1993) Bare-1, a Copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22:829–846CrossRefPubMedPubMedCentralGoogle Scholar
  43. Marcotuli I, Gadaleta A, Mangini G, Signorile AM, Zacheo SA, Blanco A, Simeone R, Colasuonno P (2017) Development of a high-density SNP-based linkage map and detection of QTL for beta-glucans, protein content, grain yield per spike and heading time in durum wheat. Int J Mol Sci 18:1329.  https://doi.org/10.3390/ijms18061329 CrossRefPubMedCentralGoogle Scholar
  44. Marcotuli I, Colasuonno P, Blanco A, Gadaleta A (2018) Expression analysis of cellulose synthase-like genes in durum wheat. Sci Rep 8:15675CrossRefGoogle Scholar
  45. Marcotuli I, Colasuonno P, Cutillo S, Simeone R, Blanco A, Gadaleta A (2019) Β-glucan content in a panel of Triticum and Aegilops genotypes. Genet Res Crop Evol 66:897–907CrossRefGoogle Scholar
  46. Martis MM, Zhou RN, Haseneyer G, Schmutzer T, Vrana J, Kubalakova M, Konig S, Kugler KG, Scholz U, Hackauf B, Korzun V, Schon CC, Dolezel J, Bauer E, Mayer KFX, Stein N (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Muehlbauer GJ et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–717CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mayer KFX, Rogers J, Dolezel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P et al (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:286Google Scholar
  49. Molina-Cano JL, Moralejo M, Elia M, Munoz P, Russell JR, Perez-Vendrell AM, Ciudad F, Swanston JS (2007) QTL analysis of a cross between European and North American malting barleys reveals a putative candidate gene for beta-glucan content on chromosome 1H. Mol Breed 19:275–284CrossRefGoogle Scholar
  50. Molnar I, Vrana J, Buresova V, Capal P, Farkas A, Darko E, Cseh A, Kubalakova M, Molnar-Lang M, Dolezel J (2016) Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J 88:452–467CrossRefPubMedPubMedCentralGoogle Scholar
  51. Molnár-Láng M, Linc G (2015) Wheat–barley hybrids and introgression lines. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Cytogenetics, molecular biology, and genomics. Springer, Cham, pp 315–346Google Scholar
  52. Morgan CH, Zhang H, Bomblies K (2017) Are the effects of elevated temperature on meiotic recombination and thermotolerance linked via the axis and synaptonemal complex? Philos Trans R Soc Lond B Biol Sci.  https://doi.org/10.1098/rstb.2016.0470 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and distribution among Triticeae. Genome 38:479–486CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nasuda S, Friebe B, Busch W, Kynast RG, Gill BS (1998) Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theor Appl Genet 96:780–785CrossRefGoogle Scholar
  55. Nemeth C, Freeman J, Jones HD, Sparks C, Pellny TK, Wilkinson MD, Dunwell J, Andersson AA, Aman P, Guillon F, Saulnier L, Mitchell RA, Shewry PR (2010) Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-beta-d-glucan in endosperm of wheat. Plant Physiol 152:1209–1218CrossRefPubMedPubMedCentralGoogle Scholar
  56. Phillips D, Jenkins G, Macaulay M, Nibau C, Wnetrzak J, Fallding D, Colas I, Oakey H, Waugh R, Ramsay L (2015) The effect of temperature on the male and female recombination landscape of barley. New Phytol 208:421–429CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pritchard JR, Lawrence GJ, Larroque O, Li Z, Laidlaw HK, Morell MK, Rahman S (2011) A survey of beta-glucan and arabinoxylan content in wheat. J Sci Food Agric 91:1298–1303CrossRefPubMedPubMedCentralGoogle Scholar
  58. Qi LL, Friebe B, Gill BS (2002) A strategy for enhancing recombination in proximal regions of chromosomes. Chromosome Res 10:645–654CrossRefPubMedPubMedCentralGoogle Scholar
  59. Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712CrossRefPubMedPubMedCentralGoogle Scholar
  60. Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rakszegi M, Molnar I, Lovegrove A, Darko E, Farkas A, Lang L, Bedo Z, Dolezel J, Molnar-Lang M, Shewry P (2017) Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front Plant Sci 8:1529CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rakszegi M, Darko E, Lovegrove A, Molnar I, Lang L, Bedo Z, Molnar-Lang M, Shewry P (2019) Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE 14:e0211892CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rey E, Abrouk M, Keeble-Gagnere G, Karafiatova M, Vrana J, Balzergue S, Soubigou-Taconnat L, Brunaud V, Martin-Magniette ML, Endo TR, Bartos J, International Wheat Genome Sequencing C, Appels R, Dolezel J (2018) Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat. Plant Biotech J 16:1767–1777CrossRefGoogle Scholar
  64. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L (2019) Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393:434–445CrossRefPubMedPubMedCentralGoogle Scholar
  65. Saintenac C, Faure S, Remay A, Choulet F, Ravel C, Paux E, Balfourier F, Feuillet C, Sourdille P (2011) Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot. Chromosoma 120:185–198CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schreiber M, Wright F, MacKenzie K, Hedley PE, Schwerdt JG, Little A et al (2014) The barley genome sequence assembly reveals three additional members of the CslF (1,3;1,4)-β-glucan synthase gene family. PLoS ONE 9(3):e90888.  https://doi.org/10.1371/journal.pone.0090888 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans IT, Peacock WJ (eds) Wheat science—today and tomorrow. Cambridge University Press, Cambridge, pp 75–89Google Scholar
  68. Sibakov J, Lehtinen P, Poutanen K (2013) Cereal brans as dietary fibre ingredients. Elsevier Science, ProQuest Ebook Central, Amsterdam, pp 153–168Google Scholar
  69. Swanston JS, Ellis RP, PerezVendrell A, Voltas J, MolinaCano JL (1997) Patterns of barley grain development in Spain and Scotland and their implications for malting quality. Cereal Chem 74:456–461CrossRefGoogle Scholar
  70. Tonooka T, Aoki E, Yoshioka T, Taketa S (2009) A novel mutant gene for (1-3,1-4)-beta-d-glucanless grain on barley (Hordeum vulgare L.) chromosome 7H. Breed Sci 59:47–54CrossRefGoogle Scholar
  71. Turkosi E, Darko E, Rakszegi M, Molnar I, Molnar-Lang M, Cseh A (2018) Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-beta-d-glucan content. PLoS One 13:0206248CrossRefGoogle Scholar
  72. U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 dietary guidelines for Americans. 8th edn. December 2015. https://health.gov/dietaryguidelines/2015/guidelines/
  73. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet 96:69–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences CenterKansas State UniversityManhattanUSA
  2. 2.Department of Plant SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations