Skip to main content

Advertisement

Log in

Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Allohexaploid (2n = 6x = 42) intermediate wheatgrass (Thinopyrum intermedium), abbreviated IWG, is an outcrossing perennial grass belonging to the tertiary gene pool of wheat. Perenniality would be valuable option for grain production, but attempts to introgress this complex trait from wheat-Thinopyrum hybrids have not been commercially successful. Efforts to breed IWG itself as a dual-purpose forage and grain crop have demonstrated useful progress and applications, but grain yields are significantly less than wheat. Therefore, genetic and physical maps have been developed to accelerate domestication of IWG. Herein, these maps were used to identify quantitative trait loci (QTLs) and candidate genes associated with IWG grain production traits in a family of 266 full-sib progenies derived from two heterozygous parents, M26 and M35. Transgressive segregation was observed for 17 traits related to seed size, shattering, threshing, inflorescence capacity, fertility, stem size, and flowering time. A total of 111 QTLs were detected in 36 different regions using 3826 genotype-by-sequence markers in 21 linkage groups. The most prominent QTL had a LOD score of 15 with synergistic effects of 29% and 22% over the family means for seed retention and percentage of naked seeds, respectively. Many QTLs aligned with one or more IWG gene models corresponding to 42 possible domestication orthogenes including the wheat Q and RHT genes. A cluster of seed-size and fertility QTLs showed possible alignment to a putative Z self-incompatibility gene, which could have detrimental grain-yield effects when genetic variability is low. These findings elucidate pathways and possible hurdles in the domestication of IWG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Download references

Acknowledgements

This research was supported by the Malone Family Land Preservation Foundation. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. KD is supported by USDA-NIFA Post-doctoral Fellowships Grant No. 2017-67012-26129/Project Accession No. 1011622 “Exploring the Genomic Landscape of Perenniality within the Triticeae.” The authors wish to thank Martin Mascher and LiangLiang Gao for advice and contributions to the continuing development of the Thinopyrum intermedium genome assembly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Larson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Alan H. Schulman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 81 kb)

Supplementary material 2 (XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, S., DeHaan, L., Poland, J. et al. Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). Theor Appl Genet 132, 2325–2351 (2019). https://doi.org/10.1007/s00122-019-03357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03357-6

Navigation