Theoretical and Applied Genetics

, Volume 132, Issue 6, pp 1847–1860 | Cite as

Genetic diversity and parentage analysis of grape rootstocks

  • Summaira Riaz
  • Daniel Pap
  • Jake Uretsky
  • Valérie Laucou
  • Jean-Michel Boursiquot
  • László Kocsis
  • M. Andrew WalkerEmail author
Original Article


Key message

The maternal and paternal parentage of 36 rootstocks was determined and verified. The results of this study indicate that existing grape rootstocks are closely related to each other and have a narrow genetic background.


Rootstocks are used to protect grapevines from biotic and abiotic stresses including phylloxera, nematodes, viruses, limestone-based soils, salinity and drought. The most important rootstocks were developed from three grape species between the 1890s and the 1930s in European breeding programs. In this report, we developed nuclear and chloroplast SSR fingerprint data from rootstock selections maintained in germplasm collections, compared them to develop a reference dataset, and carried out parentage analysis to resolve previously reported, and determine new, breeding records. We refined and updated the parentage of 26 rootstocks based on 21 nuclear and 14 chloroplast markers. Results indicate that 39% of the genetic background of analyzed rootstocks originated from only three accessions of three grape species: Vitis berlandieri cv. Rességuier 2, V. rupestris cv. du Lot and V. riparia cv. Gloire de Montpellier. Results determined that Rességuier 2 is the maternal parent for 14 commercial rootstocks, 9 of which are full-sibs with Gloire de Montpellier as the paternal parent. Similarly, du Lot is the paternal parent of nine rootstocks. The pedigree information for 28 rootstocks was determined or corrected in this study. The previously reported pedigree information for eight of the rootstocks was correct. The results found that the world’s existing rootstocks have a narrow genetic base derived from only a few American grape species. Future rootstock breeding efforts should use a more diverse array of species to combat a changing climate and pest pressure.



The authors gratefully acknowledge the funding support of the California Grape Rootstock Improvement Commission, the American Vineyard Foundation and the Louise Rossi Endowed Chair in Viticulture funds. They also gratefully acknowledge the research support of Rong Hu and Nina Romero.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

122_2019_3320_MOESM1_ESM.xlsx (107 kb)
Supplementary material 1 (XLSX 107 kb)


  1. Antcliff AJ, Newman HP, Barrett HC (1983) Variation in chloride accumulation in some American species of grapevine. Vitis 22:357–362Google Scholar
  2. Bakonyi K, Kocsis L (2004) Teleki Zsigmond Élete és Munkássága. (Life and Activity of Sigismund Teleki) VE. Georgikon Mezőgazdasági Kar, KeszthelyGoogle Scholar
  3. Bavaresco L, Gardiman M, Brancadoro L, Espen L, Failla O, Scienza A, Vezzulli S, Zulini L, Velasco R, Stefanini M, Di Gaspero G (2015) Grapevine breeding programs in Italy. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Cambridge, pp 135–155CrossRefGoogle Scholar
  4. Boubals D (1966) Etude de la distribution et des causes de le resistance au phylloxera radiciole chez les Vitacees. Ann Amelior Plantes 16:145–184Google Scholar
  5. Bourquin J-C, Otten L, Walter B (1991) Identification of grapevine rootstocks by RFLP. C R Acad Sci Paris 312:593–598Google Scholar
  6. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633CrossRefPubMedGoogle Scholar
  7. Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246Google Scholar
  8. Bradley RG, Malstaff G (2004) Dry periods and drought events of the Edwards Plateau, Texas. In: Mace RE, Angle ES, Mullican WF (eds) Aquifers of the Edwards Plateau. Texas Water Development Board, Austin, pp 201–210Google Scholar
  9. Bryan GJ, McNicoll J, Ramsay G, Meyer RC, De Jong WS (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet 99:859–867CrossRefGoogle Scholar
  10. Campbell C (2006) The botanist and the Vintner: How wine was saved for the world. Algonquin Books, Chapel HillGoogle Scholar
  11. Chung SM, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet 107:757–776CrossRefPubMedGoogle Scholar
  12. Crespan M, Meneghetti S, Cancellier S (2009) Identification and genetic relationship of the principal rootstocks cultivated in Italy. Am J Enol Vitic 60:349–356Google Scholar
  13. de Andrés MT, Cabezas JA, Cervera MT, Borrego J, Martinez-Zapater JM, Jouve N (2007) Molecular characterization of grapevine rootstocks maintained in germplasm collections. Am J Enol Vitic 58:75–86Google Scholar
  14. Downton WJS (1977) Chloride accumulation in different species of grapevine. Sci Hortic 7:249–253CrossRefGoogle Scholar
  15. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Soft 22:1–20CrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620CrossRefGoogle Scholar
  17. Ferris H, Zheng L, Walker MA (2012) Resistance of grape rootstocks to plant-parasitic nematodes. J Nematol 44:377–386PubMedPubMedCentralGoogle Scholar
  18. Foëx G (1902) Manual of Modern Viticulture: Reconstitution with American Vines. Translated from the sixth French edition by R. Dubois and W.P. Wilkinson. Robert. S. Brain, Government Printer, Melbourne, AustraliaGoogle Scholar
  19. Gambetta GA, Manuck CM, Drucker ST, Shaghasi T, Fort K, Matthews MA, Walker MA, McElrone AJ (2012) The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? J Exp Bot 63:6445–6455CrossRefPubMedPubMedCentralGoogle Scholar
  20. Garris A, Cousins P, Ramming D, Baldo A (2009) Parentage analysis of Freedom rootstock. Am J Enol Vitic 60:357–361Google Scholar
  21. Gerber S, Chabrier P, Kremer A (2003) FaMoz: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3:479–481CrossRefGoogle Scholar
  22. Granett J, Omer AD, Walker MA (2001) Seasonal capacity of attached and detached vineyard roots to support grape phylloxera (Homoptera: Phylloxeridae). J Econ Entomol 94:138–144CrossRefPubMedGoogle Scholar
  23. Granett J, Walker MA, Fossen MA (2005) Association between grape phylloxera and strongly resistant rootstocks in California: bioassays. In: IIIrd international grapevine phylloxera symposium, vol 733, pp 25–31Google Scholar
  24. Grzegorczyk W, Walker MA (1998) Evaluating resistance to grape phylloxera in Vitis species with an in vitro dual culture assay. Am J Enol Vitic 49:17–22Google Scholar
  25. Guerra B, Meredith CP (1995) Comparison of Vitis berlandieri x Vitis riparia rootstock cultivars by restriction fragment length polymorphism analysis. Vitis 34:109–112Google Scholar
  26. Hajdu E (2015) Grapevine breeding in Hungary. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Cambridge, pp 103–134CrossRefGoogle Scholar
  27. Heinitz C (2016) Characterization of Vitis species from the southwest United States and Mexico for breeding and conservation. University of California, Davis, ProQuest Dissertations Publishing, 10194819Google Scholar
  28. Henderson SW, Baumann U, Blackmore DH, Walker AR, Walker RR, Gilliham M (2014) Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biol 14:1–18CrossRefGoogle Scholar
  29. Jahnke G, Kocsisné Molnár G, Májer J, Szőke B, Tarczal E, Varga P, Kocsis L (2011) Analysis of grape rootstocks by SSR markers. J Int Sci Vigne Vin 45:199–210Google Scholar
  30. Kocsis L, Granett J, Walker MA, Lin H, Omer AD (1999) Grape phylloxera populations adapted to Vitis berlandieri X V. riparia rootstocks. Am J Enol Vitic 50:101–106Google Scholar
  31. Lacombe T, Boursiquot JM, Laucou V, Vecchi-Staraz M, Peros JP, This P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414CrossRefPubMedGoogle Scholar
  32. Laucou V, Boursiquot JM, Lacombe T, Bordenave L, Decroocq S, Ollat N (2008) Parentage of grapevine rootstock ‘Fercal’ finally elucidated. Vitis 47:163–167Google Scholar
  33. Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Varès D, Péros JP, Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245CrossRefPubMedGoogle Scholar
  34. Lin H, Walker MA (1998) Identifying grape rootstocks with simple sequence repeat (SSR) DNA markers. Am J Enol Vitic 49:403–407Google Scholar
  35. Lund KT, Riaz S, Walker MA (2017) Population structure, diversity and reproductive mode of the grape phylloxera (Daktulosphaira vitifoliae) across its native range. PLoS ONE 12:e0170678. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766PubMedPubMedCentralGoogle Scholar
  37. Manty F (2005) Hintergrunde zur Entstehung der Bezeichnungen der Unterlagenselektionen von Sigmund Teleki und Franz Kober. Deutsches Weinbau-Jahrbuch 2006 57:159–164Google Scholar
  38. Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon A-F, Decroocq S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366CrossRefGoogle Scholar
  39. Millardet A (1885) Histoire des Principales Variétés et Espèces de Vigne d’Origine Américaine qui Résistent au Phylloxéra (Paris, France)Google Scholar
  40. Morano LD, Walker MA (1995) Soils and plant communities associated with three Vitis species. Am Midl Nat 134:254–263. CrossRefGoogle Scholar
  41. Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, CambridgeGoogle Scholar
  42. Munson TV (1909) Foundations of American grape culture. Orange Judd Company, New YorkCrossRefGoogle Scholar
  43. Newman HP, Antcliff AJ (1983) Chloride accumulation in some hybrids and backcrosses of Vitis berlandieri and Vitis vinifera. Vitis 23:106–112Google Scholar
  44. Ollat N, Peccoux A, Papura D, Esmenjaud D, Marguerit E, Tandonnet JP, Bordenave L, Cookson SJ, Barrieu F, Rossdeutsch L, Lecourt J, Lauvergeat V, Vivin P, Bert P-F, Delrot S (2016) Rootstocks as a component of adaptation to environment. In: Geros H, Chaves MM, Medrano H, Delrot S (eds) Grapevine in a changing environment: a molecular and ecophysiological perspective, 1st edn. Wiley, New York, pp 68–108CrossRefGoogle Scholar
  45. Pap D, Miller AJ, Londo JP, Kovács LG (2015) Population structure of Vitis rupestris, an important resource for viticulture. Am J Enol Vitic 66:403–410CrossRefGoogle Scholar
  46. Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16(1):170CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pap D, Lund KT, Riaz S, Walker MA (2018) California isolates of grape phylloxera (Daktulosphaira vitifoliae) exhibit diverse feeding behavior. Am J Enol Vitic (submitted)Google Scholar
  48. Pavloušek P (2015) Grapevine breeding in Central and Eastern Europe. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Cambridge, pp 211–244CrossRefGoogle Scholar
  49. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  50. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  51. Péros JP, Berger G, Portemont A, Boursiquot JM, Lacombe T (2011) Genetic variation and biogeography of the disjunct Vitis subg. Vitis (Vitaceae). J Biogeog 38:471–486CrossRefGoogle Scholar
  52. Perrier X, Jacquemoud-Collet JP (2006) DARwin software
  53. Poczai P, Hyvönen J, Taller J, Jahnke G, Kocsis L (2013) Phylogenetic analyses of Teleki grapevine rootstocks using three chloroplast DNA markers. Plant Mol Biol Report 31:371–386CrossRefGoogle Scholar
  54. Pongrácz DP (1983) Rootstocks for Grape-vines. David Philip Publisher, Cape TownGoogle Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  56. Ravaz L (1902) Les Vignes Américaines: Porte-Greffes et Producteurs Directs (Montpellier, France)Google Scholar
  57. Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Badenes ML, Byrne DH (eds) Fruit breeding, handbook of plant breeding 8. Springer Science + Business Media, LLC, New York, pp 225–262Google Scholar
  58. Ruehl E, Schmid J, Eibach R, Töpfer R (2015) Grapevine breeding programs in Germany. Grapevine breeding programs for the wine industry. Woodhead Publishing, Oxford, pp 77–101CrossRefGoogle Scholar
  59. Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373CrossRefPubMedGoogle Scholar
  60. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibáñez J, Lacombe T, Laucou V, Magalhães R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458CrossRefPubMedGoogle Scholar
  61. Thomas M, Scott N (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990CrossRefPubMedGoogle Scholar
  62. Upadhyay A, Saboji MD, Reddy S, Deokar K, Karibasappa GS (2007) AFLP and SSR marker analysis of grape rootstocks in Indian grape germplasm. Sci Hortic 112:176–183CrossRefGoogle Scholar
  63. Uretksy J (2018) Genetic and ecological characterization of Vitis berlandieri Planch. and associated taxa for breeding grape rootstocks. University of California, Davis, ProQuest Dissertations Publishing, 18058Google Scholar
  64. Viala P, Ravaz L (1903) American vines (resistant stock): their adaptation, culture. Press of Freygang-Leary Company, Grafting and PropagationGoogle Scholar
  65. Walker MA, Liu L (1995) The use of isozymes to identify 60 grapevine rootstocks (Vitis spp.). Am J Enol Vitic 46:299–305Google Scholar
  66. Walker RR, Blackmore DH, Clingeleffer PR, Correll RL (2002) Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). 1. Yield and vigour interrelationships. Austral J Grape Wine Res 8:3–14CrossRefGoogle Scholar
  67. Walker RR, Blackmore DH, Clingeleffer PR, Correll RL (2004) Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) 2. ion concentrations in leaves and juice. Austral J Grape Wine Res 10:90–99CrossRefGoogle Scholar
  68. Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Viticulture and EnologyUniversity of CaliforniaDavisUSA
  2. 2.Equipe DAAV, UMR AGAP, INRA, Montpellier SupAgro, CIRADUniv. MontpellierMontpellierFrance
  3. 3.Department of Horticulture, Georgikon FacultyUniversity of PannoniaKeszthelyHungary

Personalised recommendations