Skip to main content
Log in

The distribution pattern of endopolyploidy in maize

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We discovered that endopolyploidization is common in various organs and tissues of maize at different development stages. Endopolyploidy is not specific in maize germplasm populations.

Abstract

Endopolyploidy is caused by DNA endoreplication, a special type of mitosis with normal DNA synthesis and a lack of cell division; it is a common phenomenon and plays an important role in plant development. To systematically study the distribution pattern of endopolyploidy in maize, flow cytometry was used to determine the ploidy by measuring the cycle (C) value in various organs at different developmental stages, in embryos and endosperm during grain development, in roots under stress conditions, and in the roots of 119 inbred lines from two heterotic groups, Shaan A and Shaan B. Endopolyploidy was observed in most organs at various developmental stages except in expanded leaves and filaments. The endosperm showed the highest C value among all organs. During tissue development, the ploidy increased in all organs except the leaves. In addition, the endopolyploidization of the roots was significantly affected by drought stress. Multiple comparisons of the C values of seven subgroups revealed that the distribution of endopolyploidization was not correlated with the population structure. A correlation analysis at the seedling stage showed a positive relationship between the C value and both the length of the whole plant and the length of main root. A genome-wide association study (GWAS) identified a total of 9 significant SNPs associated with endopolyploidy (C value) in maize, and 8 candidate genes that participate in cell cycle regulation and DNA replication were uncovered in 119 maize inbred lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchishinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anisimov AP (2005) Endopolyploidy as a morphogenetic factor of development. Cell Biol Int 29:993–1004

    Article  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Barow M (2006) Endopolyploidy in seed plants. BioEssays 28:271

    Article  CAS  PubMed  Google Scholar 

  • Barow M, Meister A (2010) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant, Cell Environ 26:571–584

    Article  Google Scholar 

  • Bhosale R, Boudolf V, Cuevas F, Lu R, Eekhout T, Hu Z, van Isterdael G, Lambert G, Xu F, Nowack MK, Smith RS, Vercauteren I, De Rycke RM, Storme V, Beeckman T, Larkin JC, Kremer A, Höfte H, Galbraith DW, Kumpf RP, Maere S, De Veylder L (2018) A spatiotemporal DNA endoploidy map of the Arabidopsis root reveals roles for the endocycle in root development and stress adaptation. Plant Cell 30:2330–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdon M, Pirrello J, Cheniclet C, Coriton O, Bourge M, Brown S, Moïse A, Peypelut M, Rouyère V, Renaudin JP (2012) Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139:3817–3826

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bradley MV, Crane JC (1955) The effect of 2,4,5-trichlorophenoxyacetic acid on cell and nuclear size and endopolyploidy in parenchyma of apricot fruits. Am J Bot 42:273–281

    Article  CAS  Google Scholar 

  • Bringezu TGG, Sharbel TF, Weber WE (2011) Grain development and endoreduplication in maize and the impact of heat stress. Euphytica 182:363–376

    Article  CAS  Google Scholar 

  • Callebaut A, Van OP, Van PR (1982) Endomitosis and the effect of gibberellic acid in different Pisum sativum L. cultivars. Planta 156:553

    Article  CAS  PubMed  Google Scholar 

  • Chong JP, Thömmes P, Blow JJ (1996) The role of MCM/P1 proteins in the licensing of DNA replication. Trends Biochem Sci 21:102

    Article  CAS  PubMed  Google Scholar 

  • Coleman LC (2011) Nuclear conditions in normal stem tissue of VICIA FABA. Can J Res 28:382–391

    Google Scholar 

  • Dan H, Imaseki H, Wasteneys GO, Kazama H (2003) Ethylene stimulates endoreduplication but inhibits cytokinesis in cucumber hypocotyl epidermis. Plant Physiol 133:1726–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dante RA, Sabelli PA, Sun Y, Dilkes BP, Gordon-Kamm WJ, Larkins BA (2005) Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant Physiol 138:2323–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dante RA, Larkins BA, Sabelli PA (2014a) Cell cycle control and seed development. Front Plant Sci 5:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Dante RA, Sabelli PA, Hong NN, Leivaneto JT, Tao Y, Lowe KS, Hoerster GJ, Gordonkamm WJ, Jung R, Larkins BA (2014b) Cyclin-dependent kinase complexes in developing maize endosperm: evidence for differential expression and functional specialization. Planta 239:493–509

    Article  CAS  PubMed  Google Scholar 

  • Dolfini SF, Landoni M, Tonelli C, Bernard L, Viotti A (2010) Spatial regulation in the expression of structural and regulatory storage-protein genes in Zea mays endosperm. Genesis 13:264–276

    Google Scholar 

  • Doyle J (1991) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Edgar BA, Zielke N, Gutierrez C (2014) Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 15:197

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendreau E, Höfte H, Grandjean O, Brown S, Traas J (1998) Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyl. Plant J Cell Mol Biol 13:221

    Article  CAS  Google Scholar 

  • Gendreau E, Orbovic V, Höfte H, Traas J (1999) Gibberellin and ethylene control endoreduplication levels in the Arabidopsis thaliana hypocotyl. Planta 209:513–516

    CAS  PubMed  Google Scholar 

  • Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafi G, Larkins BA (1995) Endoreduplication in maize endosperm: involvement of M phase—promoting factor inhibition and induction of S phase—related kinases. Science 269:1262

    Article  CAS  PubMed  Google Scholar 

  • Guo DW, Fei LI, Liu-Yin MA, Lian-Cheng LI, You-Zhi MA, Ri-Fei Sun (2008) Endopolyploidization phenomenon of Chinese cabbage (Brassica rapa ssp. pekinensis). Acta Agronomica Sinica 34:1386–1392

    Article  Google Scholar 

  • Hunter T (1987) A thousand and one protein kinases. Cell 50:823

    Article  CAS  PubMed  Google Scholar 

  • Inzé D, Veylder LD (2006) Cell cycle regulation in plant development 1. Annu Rev Genet 40:77

    Article  CAS  PubMed  Google Scholar 

  • Jonathan B, Katja W, Christina W, Farshad R, Remmy K, Larkin JC, Martin H, Arp S (2010) Endoreplication controls cell fate maintenance. PLoS Genet 6:e1000996

    Article  CAS  Google Scholar 

  • Joubès J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745

    Article  PubMed  Google Scholar 

  • Katagiri Y, Hasegawa J, Fujikura U, Hoshino R, Matsunaga S, Tsukaya H (2016) The coordination of ploidy and cell size differs between cell layers in leaves. Development 143:1120–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearsey SE, Labib K (1998) MCM proteins: evolution, properties, and role in DNA replication. Biochimica et Biophysica Acta (BBA)-Gene Struct Express 1398:113–136

    Article  CAS  Google Scholar 

  • Kearsey SE, Maiorano D, Holmes EC, Todorov IT (1996) The role of MCM proteins in the cell cycle control of genome duplication. BioEssays 18:183–190

    Article  CAS  PubMed  Google Scholar 

  • Kondorosi E, Roudier F, Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3:488–492

    Article  CAS  PubMed  Google Scholar 

  • Kowles RV, Yerk GL, Haas KM, Phillips RL (1997) Maternal effects influencing DNA endoreduplication in developing endosperm of Zea mays. Genome 40:798

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Kimura Y (2001) Flow cytometric evidence for endopolyploidy in seedlings of some Brassica species. Theor Appl Genet 102:104–110

    Article  CAS  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183

    Article  CAS  PubMed  Google Scholar 

  • Lee HO, Davidson JM, Duronio RJ (2009) Endoreplication: polyploidy with purpose. Genes Dev 23:2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo YM, Maddock S, Gordon-Kamm WJ, Larkins BA (2004) A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 16:1854–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Qu J, Wang Y, Chang L, He K, Guo D, Zhang X, Xu S, Xue J (2018) Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield. BMC Genet 19:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lur HS, Setter TL (1993) Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol 103(1):273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP, Chimungu JG, Brown KM (2014) Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. J Exp Bot 65:6155

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Umemura Y, Ohmetakagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant Journal 55:954–967

    Article  CAS  Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477

    Article  CAS  PubMed  Google Scholar 

  • Mishiba KI, Okamoto T, Mii M (2001) Increasing ploidy level in cell suspension cultures of Doritaenopsis by exogenous application of 2,4-dichlorophenoxyacetic acid. Physiol Plant 112:142–148

    Article  CAS  PubMed  Google Scholar 

  • Mohamed Y, Bopp M (1980) Distribution of polyploidy in elongating and non-elongating shoot axis of Pisum sativum. Zeitschrift Für Pflanzenphysiologie 98:25–33

    Article  CAS  Google Scholar 

  • Nguyen HN, Sabelli PA, Larkins BA (2007) Endoreduplication and programmed cell death in the cereal endosperm. Springer, Berlin

    Book  Google Scholar 

  • Niu Y (2001) Adapting the specialization of cell wall in the plant tissue to the functions. J Hengshui Normal Coll 3:49–51

    Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  CAS  PubMed  Google Scholar 

  • Pesch M, Hülskamp M (2009) One, two, three…models for trichome patterning in Arabidopsis? Curr Opin Plant Biol 12:587–592

    Article  CAS  PubMed  Google Scholar 

  • Roeder AH, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM (2010) Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol 8(5):e1000367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabelli PA (2012) Replicate and die for your own good: endoreduplication and cell death in the cereal endosperm. J Cereal Sci 56:9–20

    Article  CAS  Google Scholar 

  • Sabelli PA (2014) Cell cycle regulation and plant development: a crop production perspective. In: Pessarakli M (ed) Handbook of Plant and Crop Physiology. CRC Press, Boca Raton, FL, pp 32–61

    Google Scholar 

  • Sabelli PA, Larkins BA (2008) The endoreduplication cell cycle: regulation and function. Springer, Berlin

    Google Scholar 

  • Sabelli PA, Dante RA, Leivaneto JT, Jung R, Gordonkamm WJ, Larkins BA (2005) RBR3, a member of the retinoblastoma-related family from maize, is regulated by the RBR1/E2F pathway. Proc Natl Acad Sci USA 102:13005–13012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabelli PA, Hoerster G, Lizarraga LE, Brown SW, Gordonkamm WJ, Larkins BA (2009) Positive regulation of minichromosome maintenance gene expression, DNA replication, and cell transformation by a plant retinoblastoma gene. Proc Natl Acad Sci USA 106:4042–4047

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabelli PA, Yan L, Dante RA, Lizarraga LE, Hong NN, Brown SW, Klingler JP, Yu J, Labrant E, Layton TM (2013) Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm. PNAS 110:E1827

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenk PW, Snaarjagalska BE (1999) Signal perception and transduction: the role of protein kinases. Biochem Biophys Acta 1449:1

    Article  CAS  PubMed  Google Scholar 

  • Schnittger A, Jurgens G, Hulskamp M (1998) Tissue layer and organ specificity of trichome formation are regulated by GLABRA1 and TRIPTYCHON in Arabidopsis. Development 125:2283–2289

    CAS  PubMed  Google Scholar 

  • Schnittger A, Weinl C, Bouyer D, Schöbinger U, Hülskamp M (2003) Misexpression of the cyclin-dependent kinase inhibitor ICK1/KRP1 in single-celled arabidopsis trichomes reduces Endoreduplication and cell size and induces cell death. Plant Cell 15:303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholes DR, Paige KN (2015) Plasticity in ploidy: a generalized response to stress. Trends Plant Sci 20:165–175

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wang LL, Sun LT, Dong LL, Liu B, Chen LP (2015) Cell division and endoreduplication play important roles in stem swelling of tuber mustard (Brassica juncea Coss. var. tumida Tsen et Lee). Plant Biology 14:956–963

    Article  CAS  Google Scholar 

  • Shu Z, Row S, Deng W (2018) Endoreplication: the good, the bad, and the ugly. Trends Cell Biol 28(6):465–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Flannigan BA, Setter TL (1999) Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel B1-type cyclin and its quantitative analysis. Plant Mol Biol 41:245–258

    Article  CAS  PubMed  Google Scholar 

  • Tong SY, Song FB (2012) Physiological characteristic changes of leaf and leaf sheath at different stem nodes of Maize in the late growth stage. Heilongjiang Agric Sci

  • Valente P, Tao W, Verbelen JP (1998) Auxins and cytokinins control DNA endoreduplication and deduplication in single cells of tobacco. Plant Sci 134:207–215

    Article  CAS  Google Scholar 

  • Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G, Kelemen Z, Tarayre S, Roudier F, Mergaert P, Kondorosi A (2003) Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula Nodules. Plant Cell 15:2093–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  • Yamagata T, Kato H, Kuroda S, Abe S, Davies E (2003) Uncleaved legumin in developing maize endosperm: identification, accumulation and putative subcellular localization. J Exp Bot 54:913–922

    Article  CAS  PubMed  Google Scholar 

  • Young TE, Gallie DR (2000a) Programmed cell death during endosperm development. Plant Mol Biol 44:283

    Article  CAS  PubMed  Google Scholar 

  • Young TE, Gallie DR (2000b) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Mol Biol 42:397–414

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Hu YF, Zhou H, Huang YB (2007) Starch accumulation and activities of key enzymes involved in starch synthesis in the grains of maize inbred lines with different starch contents. J Plant Physiol Mol Biol 33:123

    Google Scholar 

  • Zhu J (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shaanxi Province Comprehensive Project (Grant Number: 2015KTZDNY01-01-01) and the Yangling District Technical Plan Project (Grant Number: 2014NY-01).

Author information

Authors and Affiliations

Authors

Contributions

DWG conceived this research. SLL measured the endopolyploidy data, performed the data analyses and interpretation and drafted the manuscript. LSL edited the manuscript and assisted in the data interpretation. TL and STX performed the DNA extractions and SNP sequencing. TRL and JCL conducted the genotypic assays. YHW measured the agronomic traits in the field. JQX provided all of the plant germplasms. ZQZ, XHZ and JCZ performed the cultivation of the greenhouse and field materials. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dongwei Guo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

We state that all experiments in the study comply with the ethical standards in China.

Additional information

Communicated by Alain Charcosset.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The flow cytometry histograms of the tested organs of maize inbred line B73 at seedling stage (V2–V5 stage) (TIFF 5401 kb)

Fig. S2

The flow cytometry histograms of the tested organs of maize inbred line B73 from elongation stage to trumpet stage (V6–V12 stage) (TIFF 11641 kb)

Fig. S3

The flow cytometry histograms of the tested organs of maize inbred line B73 during reproductive stage (VT stage-7 DAP) (TIFF 18238 kb)

Fig. S4

The flow cytometry histograms of the B73 grain during pollination (TIFF 8212 kb)

Fig. S5

Hierarchical clustering of the cycle value. Group I: low-level cycle value (L); Group II: medium-level cycle value (M); Group III: high-level cycle value (H) (TIFF 1480 kb)

Supplementary material 6 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, L., Li, T. et al. The distribution pattern of endopolyploidy in maize. Theor Appl Genet 132, 1487–1503 (2019). https://doi.org/10.1007/s00122-019-03294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03294-4

Navigation