Skip to main content

Advertisement

Log in

Fine mapping of Aegilops peregrina co-segregating leaf and stripe rust resistance genes to distal-most end of 5DS

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Novel rust resistance genes LrP and YrP from Ae. peregrina identified on chromosome 5D and the linked markers will aid deployment of these genes in combination with other major/minor genes.

Abstract

Aegilops peregrina, a wild tetraploid relative of wheat with genome constitution UUSS, displays genetic variation for resistance to leaf and stripe (yellow) rust. The wheat Ae. peregrina introgression line, IL pau16058, harbouring leaf and stripe rust resistance, was crossed with wheat cv. WL711 to generate an F2:3 mapping population. Inheritance studies on this population indicated the transfer of dominant co-segregating resistance to leaf and stripe rust. Ethyl methane sulphonate mutagenesis of IL pau16058 identified independent loss-of-function mutants for leaf and stripe rust resistance, indicating that the leaf and stripe rust resistance is controlled by independent genes, herein designated LrP and YrP, respectively. A high-resolution genetic map of LrP and YrP was constructed using the Illumina Infinium iSelect 90K wheat array and resistance gene enrichment sequencing (RenSeq) markers. The map spans 4.19 cM on the distal-most region of the short arm of chromosome 5D, consisting of eight SNP markers and one microsatellite marker. LrP and YrP co-segregated with markers BS00163889 and 5DS44573_snp and was flanked distally by the SNP marker BS00129707 and proximally by 5DS149010, defining a 15.71 Mb region in the RefSeq v1.0 genome assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal R, Kulshreshtha D, Sharma S, Singh VK, Manjunatha C, Bhardwaj SC, Saharan MS (2018) Molecular characterization of Indian pathotypes of Puccinia striiformis f. sp. tritici and multigene phylogenetic analysis to establish inter- and intraspecific relationships. Genet Mol Biol. https://doi.org/10.1590/1678-4685-gmb-2017-0171

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal M (2017) Fine Mapping and identification of candidate genes for a stripe rust and a leaf rust resistance transferred from Aegilops umbellulata to bread wheat (Triticum aestivum). Dissertation, Punjab Agricultural University, Ludhiana, Punjab, India

  • Bansal M, Kaur S, Dhaliwal HS, Bains NS, Bariana HS, Chhuneja P, Bansal UK (2017) Mapping of Aegilops umbellulata—derived leaf rust and stripe loci in wheat. Plant Pathol 66:38–44

    Article  CAS  Google Scholar 

  • Brabham HJ, Hernández-Pinzón I, Holden S, Lorang J, Moscou MJ (2017) An ancient integration in a plant NLR is maintained as a trans-species polymorphism. BiorRxiv: https://doi.org/10.1101/239541

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  PubMed  Google Scholar 

  • Chhuneja P, Yadav B, Stirnweis D, Hurni S, Kaur S, Elkot AF, Keller B, Wicker T, Sehgal S, Gill BS, Singh K (2015) Fine mapping of powdery mildew resistance genes PmTb7A.1 and PmTb7A.2. In Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL. Theor Appl Genet 128:2099–2111

    Article  CAS  PubMed  Google Scholar 

  • Chhuneja P, Kaur S, Dhaliwal HS (2016) Introgression and exploitation of biotic stress tolerance from related wild species in wheat cultivars. In: Rajpal VR et al (eds) Molecular breeding for sustainable crop improvement, sustainable development and biodiversity, vol 11. Springer, Basel, pp 269–324

    Chapter  Google Scholar 

  • Curtis CA, Lukaszewski AJ (1991) Genetic linkage between C-bands and storage protein genes in chromosome 1B of tetraploid wheat. Theor Appl Genet 81:245–252. https://doi.org/10.1007/BF00215730

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Gale MD (1993) Extended genetic maps of the homoeologous group 3 chromosomes of wheat, rye and barley. Theor Appl Genet 85:649–652

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojć P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    Article  CAS  PubMed  Google Scholar 

  • Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn J Genet 65:135–152

    Article  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  CAS  PubMed  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296. https://doi.org/10.1146/annurev.py.09.090171.001423

    Article  Google Scholar 

  • Gale MD, Miller TE (1987) The introduction of alien genetic variation into wheat. In: Lupton FGH (ed) Wheat breeding: its scientific basis. Chapman and Hall, London, pp 173–210

    Chapter  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. https://doi.org/10.1126/science.aar7191

    Article  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Jupe F, Witek K, Verweij W, Sliwka J, Pritchard L, Etherington GJ (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran K, Rawal HC, Dubey H, Jaswal R, Devanna BN, Gupta DK, Bhardwaj SC, Prasad P, Pal D, Chhuneja P, Balasubramanian P, Kumar J, Swami M, Solanke AU, Gaikwad K, Singh NK, Sharma TR (2016) Draft genome of the wheat rust pathogen (Puccinia triticina) unravels genome-wide structural variations during evolution. Genome Biol Evol 8(9):2702–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolmer JA, Su Z, Bernardo A, Bai G, Chao S (2018) Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat. Theor Appl Genet 131:1553–1560. https://doi.org/10.1007/s00122-018-3097-3

    Article  CAS  PubMed  Google Scholar 

  • Kourelis J, Van der Hoorn RAL (2018) Nine R gene mechanisms. Plant Cell. https://doi.org/10.1105/tpc.17.00579

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Kuruparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003

    Article  CAS  Google Scholar 

  • Mago R, Till B, Periyannan S, Yu G, Wulff BBH, Lagudah E (2017) Generation of loss-of-function mutants for wheat rust disease resistance gene cloning. Methods Mol Biol 1659:199–205. https://doi.org/10.1007/978-1-4939-7249-4_17

    Article  PubMed  Google Scholar 

  • Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed 124:538–541

    Article  CAS  Google Scholar 

  • Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski N, Boyd L, McIntosh R, Wulff BBH, Berry S, Lagudah E, Uauy C (2018) BED-domain containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants 4:662–668

    Article  CAS  Google Scholar 

  • McIntosh RA (1977) Induced mutations against plant diseases. In: Proceedings of a symposium on the use of induced mutations for improving disease resistance in crop plants; 31 Jan–4 Feb 1977; Vienna. International Atomic Energy Agency, Vienna; 1977. Nature of induced mutations affecting disease reaction in wheat; pp 551–564

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, East Melbourne

    Book  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue of gene symbols for wheat: 2017 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

  • Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó E, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J (2016) Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J 88(3):452–467. https://doi.org/10.1111/tpj.13266

    Article  CAS  PubMed  Google Scholar 

  • Narang D, Kaur S, Saini J, Chhuneja P (2018) Development and molecular characterization of wheat-aegilops peregrina introgression lines with resistance to leaf rust and stripe rust. J Crop Improv 32(1):59–70. https://doi.org/10.1080/15427528.2017.1398117

    Article  Google Scholar 

  • Niu ZX, Klindworth DL, Friesen TL, Chao SM, Jin Y, Cai XW, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker assisted chromosome engineering. Genetics 187:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Article  CAS  PubMed  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagnostic scale for estimating rust severity on leaves and stem of cereals. Can J Res Sect C Bot Sci 26:496–500

    Article  Google Scholar 

  • Prins R, Marais GF (1999) A genetic study of the gametocidal effect of the Lr19 translocation of common wheat. S Afr J Plant Soil 16:10–14

    Article  Google Scholar 

  • Ramírez-González RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624

    Article  CAS  PubMed  Google Scholar 

  • Riar AK, Kaur S, Dhaliwal HS, Singh K, Chhuneja P (2012) Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J Genet 91:155–161

    Article  CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    Article  CAS  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Research Bulletin 572, Missouri Agricultural Experiment Station, University of Missouri, Columbia, p 58

  • Sears ER (1972) Chromosome engineering in wheat. In: Stadler genetics symposium, vol 4. University of Missouri, Columbia, pp 23–38

  • Singh K, Chhuneja P, Ghai M, Kaur S, Goel RK, Bains NS, Keller B, Dhaliwal HS (2007) Molecular mapping of leaf and stripe rust resistance genes in Triticum monococcum and their transfer to hexaploid wheat. In: Buck H, Nisi JE, Solomon N (eds) Wheat production in stressed environments, 12th edn. Springer, dordrecht, pp 779–786

    Chapter  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Steuernagel B, Jupe F, Witek K, Jones JD, Wulff BBH (2015) NLR-parser: rapid annotation of plant NLR complements. Bioinformatics 31:1665–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steuernagel B, Periyannan SK, Hernandez-Pinzon I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, Lagudah ES, Wulff BBH (2016) Rapid cloning of disease resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652–655

    Article  CAS  Google Scholar 

  • Steuernagel B, Witek K, Jones JDG, Wulff BBH (2017) MutRenSeq: a method for rapid cloning of plant disease resistance genes. Methods Mol Biol 1659:215–229. https://doi.org/10.1007/978-1-4939-7249-4_19

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VK, Wang S, Danilova T, Koo DH, Vrána J, Kubaláková M, Hribova E, Rawat N, Kalia B, Singh N, Friebe B, Doležel J, Akhunov E, Poland J, Sabir JSM, Gill BS (2015) Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of Aegilops geniculata. Plant J 84:733–746

    Article  CAS  PubMed  Google Scholar 

  • Toor PI, Kaur S, Bansal M, Yadav B, Chhuneja P (2016) Mapping of stripe rust resistance gene in an Aegilops caudata introgression line in wheat and its genetic association with leaf rust resistance. J Genet 95(4):933–938. https://doi.org/10.1007/s12041-016-0718-y

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol. https://doi.org/10.1186/1471-2229-9-115

    Article  PubMed  PubMed Central  Google Scholar 

  • Uauy C, Wulff BBH, Dubcovsky J (2017) Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu Rev Genet 51:435–454. https://doi.org/10.1146/annurev-genet-120116-024533

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):115

    Article  CAS  Google Scholar 

  • Voorips RE (2002) Map chart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo Hayden M, Akhunov E, International Wheat Genome Sequencing Consortium (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Champouret N, Steuernagel B, Olivera PD, Simmons J, Williams C, Johnson R, Moscou MJ, Hernández-Pinzón I, Green P, Sela H, Millet E, Jones JDG, Ward ER, Steffenson BJ, Wulff BBH (2017) Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theor Appl Genet 130(6):1207–1222. https://doi.org/10.1007/s00122-017-2882-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by the Sustainable Crop Production Research for International Development (SCPRID) and the Crop Genomics and Technologies (CGAT) programmes from the Department of Biotechnology, Ministry of Science and Technology, Government of India, and the Biotechnology and Biological Sciences Research Council, UK, Grant BT/IN/UK/08/PC/2012 (BB/J012017/1) to PC and CU, Grant BT/IN/Indo-UK/CGAT/14/PC/2014-15 (BBS/E/J/000CA572) to PC and BBHW and the BBSRC Designing Future Wheat Programme (BB/P016855/1). The provision of rust cultures by the Directorate of Wheat Research Regional Research Station, Shimla, is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Chhuneja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Aimin Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narang, D., Kaur, S., Steuernagel, B. et al. Fine mapping of Aegilops peregrina co-segregating leaf and stripe rust resistance genes to distal-most end of 5DS. Theor Appl Genet 132, 1473–1485 (2019). https://doi.org/10.1007/s00122-019-03293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03293-5

Navigation