Theoretical and Applied Genetics

, Volume 132, Issue 1, pp 81–96 | Cite as

Genomic selection efficiency and a priori estimation of accuracy in a structured dent maize panel

  • Simon Rio
  • Tristan Mary-Huard
  • Laurence Moreau
  • Alain CharcossetEmail author
Original Article


Key message

Population structure affects genomic selection efficiency as well as the ability to forecast accuracy using standard GBLUP.


Genomic prediction models usually assume that the individuals used for calibration belong to the same population as those to be predicted. Most of the a priori indicators of precision, such as the coefficient of determination (CD), were derived from those same models. But genetic structure is a common feature in plant species, and it may impact genomic selection efficiency and the ability to forecast prediction accuracy. We investigated the impact of genetic structure in a dent maize panel (“Amaizing Dent”) using different scenarios including within- or across-group predictions. For a given training set size, the best accuracies were achieved when predicting individuals using a model calibrated on the same genetic group. Nevertheless, a diverse training set representing all the groups had a certain predictive efficiency for all the validation sets, and adding extra-group individuals was almost always beneficial. It underlines the potential of such a generic training set for dent maize genomic selection applications. Alternative prediction models, taking genetic structure explicitly into account, did not improve the prediction accuracy compared to GBLUP. We also investigated the ability of different indicators of precision to forecast accuracy in the within- or across-group scenarios. There was a global encouraging trend of the CD to differentiate scenarios, although there were specific combinations of target populations and traits where the efficiency of this indicator proved to be null. One hypothesis to explain such erratic performances is the impact of genetic structure through group-specific allele diversity at QTLs rather than group-specific allele effects.



This research was supported by the “Investissement d’Avenir” project “Amaizing”. S. Rio is jointly funded by the program AdmixSel of the INRA metaprogram SelGen and by the breeding companies partners of the Amaizing project: Caussade-Semences, Euralis, KWS, Limagrain, Maisadour, RAGT and Syngenta. We thank Valerie Combes, Delphine Madur and Stephane Nicolas for DNA extraction, analysis and assembly of genotypic data. We thank Cyril Bauland and Carine Palaffre (INRA Saint-Martin de Hinx) for the panel assembly and the coordination of seed production, all breeding companies partners of the Amaizing project and Biogemma for field trials and Pierre Dubreuil (Biogemma) for the assembly and the analysis of phenotypic data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the countries in which the experiments were performed.

Supplementary material

122_2018_3196_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (pdf 1196 KB)


  1. Albrecht T, Auinger H-J, Wimmer V, Ogutu JO, Knaak C, Ouzunova M, Piepho H-P, Schön C-C (2014) Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theor Appl Genet 127(6):1375–1386CrossRefGoogle Scholar
  2. Alexander D, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CrossRefGoogle Scholar
  3. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24(4):451–471CrossRefGoogle Scholar
  4. Brard S, Ricard A (2015) Is the use of formulae a reliable way to predict the accuracy of genomic selection? J Anim Breed Genet 132(3):207–217CrossRefGoogle Scholar
  5. Brøndum R, Rius-Vilarrasa E, Strandén I, Su G, Guldbrandtsen B, Fikse W, Lund M (2011) Reliabilities of genomic prediction using combined reference data of the Nordic Red dairy cattle populations. J Dairy Sci 94:4700–4707CrossRefGoogle Scholar
  6. Browning B, Browning S (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223CrossRefGoogle Scholar
  7. Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manualGoogle Scholar
  8. Carillier C, Larroque H, Robert-Granié C (2014) Comparison of joint versus purebred genomic evaluation in the french multi-breed dairy goat population. Genet Select Evol 46(1):67CrossRefGoogle Scholar
  9. Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3(10):1–8CrossRefGoogle Scholar
  10. de Roos APW, Hayes BJ, Goddard ME (2009) Reliability of genomic predictions across multiple populations. Genetics 183(4):1545–1553CrossRefGoogle Scholar
  11. Duhnen A, Gras A, Teyssèdre S, Romestant M, Claustres B, Daydé J, Mangin B (2017) Genomic selection for yield and seed protein content in soybean: a study of breeding program data and assessment of prediction accuracy. Crop Sci 57:1–13CrossRefGoogle Scholar
  12. Elsen J-M (2016) Approximated prediction of genomic selection accuracy when reference and candidate populations are related. Genet Select Evol 48(1):18CrossRefGoogle Scholar
  13. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):1–10CrossRefGoogle Scholar
  14. Endelman JB, Atlin GN, Beyene Y, Semagn K, Zhang X, Sorrells ME, Jannink J (2014) Optimal design of preliminary yield trials with genome-wide markers. Crop Sci 54:48–59CrossRefGoogle Scholar
  15. Erbe M, Gredler B, Seefried FR, Bapst B, Simianer H (2013) A function accounting for training set size and marker density to model the average accuracy of genomic prediction. PLoS ONE 8(12):1–11CrossRefGoogle Scholar
  16. Esfandyari H, Sørensen AC, Bijma P (2015) A crossbred reference population can improve the response to genomic selection for crossbred performance. Genet Select Evol 47(1):76CrossRefGoogle Scholar
  17. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J, Le Paslier M-C, McMullen MD, Montalent P, Rose M, Schön C-C, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (zea mays l.) snp genotyping array: development and germplasm genotyping, and genetic mapping to compare with the b73 reference genome. PLoS ONE 6(12):1–15CrossRefGoogle Scholar
  18. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) Tassel-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9(2):1–11CrossRefGoogle Scholar
  19. Goddard M, Hayes B, Meuwissen T (2011) Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet 128(6):409–421CrossRefGoogle Scholar
  20. Guo Z, Tucker DM, Basten CJ, Gandhi H, Ersoz E, Guo B, Xu Z, Wang D, Gay G (2014) The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet 127(3):749–762CrossRefGoogle Scholar
  21. Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME (2009) Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Select Evol 41(1):51CrossRefGoogle Scholar
  22. Heslot N, Yang H, Sorrells ME, Jannink J (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160CrossRefGoogle Scholar
  23. Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128(1):145–158CrossRefGoogle Scholar
  24. Karoui S, Carabaño MJ, Díaz C, Legarra A (2012) Joint genomic evaluation of French dairy cattle breeds using multiple-trait models. Genet Select Evol 44(1):39CrossRefGoogle Scholar
  25. Lehermeier C, Schön C-C, de los Campos G (2015) Assessment of genetic heterogeneity in structured plant populations using multivariate whole-genome regression models. Genetics 201(1):323–337CrossRefGoogle Scholar
  26. Makgahlela M, Mäntysaari E, Strandén I, Koivula M, Nielsen U, Sillanpää M, Juga J (2013) Across breed multi-trait random regression genomic predictions in the nordic red dairy cattle. J Anim Breed Genet 130(1):10–19CrossRefGoogle Scholar
  27. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829PubMedPubMedCentralGoogle Scholar
  28. Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Van Eeuwijk F, Tardieu F (2016) Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol 172(2):749–764PubMedPubMedCentralGoogle Scholar
  29. Olson KM, Van Raden PM, Tooker ME (2012) Multibreed genomic evaluations using purebred Holsteins, Jerseys, and Brown Swiss. J Dairy Sci 95(9):5378–5383CrossRefGoogle Scholar
  30. Plieschke L, Edel C, Pimentel EC, Emmerling R, Bennewitz J, Götz K-U (2015) A simple method to separate base population and segregation effects in genomic relationship matrices. Genet Select Evol 47(1):53CrossRefGoogle Scholar
  31. Pszczola M, Strabel T, Mulder H, Calus M (2012) Reliability of direct genomic values for animals with different relationships within and to the reference population. J Dairy Sci 95(1):389–400CrossRefGoogle Scholar
  32. Rabier C-E, Barre P, Asp T, Charmet G, Mangin B (2016) On the accuracy of genomic selection. PLoS ONE 11(6):1–23CrossRefGoogle Scholar
  33. Rincent R, Charcosset A, Moreau L (2017) Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations. Theor Appl Genet 130(11):2231–2247CrossRefGoogle Scholar
  34. Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodríguez V, Moreno-Gonzalez J, Melchinger A, Bauer E, Schoen C-C, Meyer N, Giauffret C, Bauland C, Jamin P, Laborde J, Monod H, Flament P, Charcosset A, Moreau L (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (zea mays l.). Genetics 192(2):715–728CrossRefGoogle Scholar
  35. Rincent R, Nicolas S, Bouchet S, Altmann T, Brunel D, Revilla P, Malvar RA, Moreno-Gonzalez J, Campo L, Melchinger AE, Schipprack W, Bauer E, Schoen C-C, Meyer N, Ouzunova M, Dubreuil P, Giauffret C, Madur D, Combes V, Dumas F, Bauland C, Jamin P, Laborde J, Flament P, Moreau L, Charcosset A (2014) Dent and flint maize diversity panels reveal important genetic potential for increasing biomass production. Theor Appl Genet 127(11):2313–2331CrossRefGoogle Scholar
  36. Schopp P, Müller D, Wientjes YCJ, Melchinger AE (2017) Genomic prediction within and across biparental families: means and variances of prediction accuracy and usefulness of deterministic equations. G3 Genes Genom Genet 7(11):3571–3586Google Scholar
  37. Strandén I, Mäntysaari EA (2013) Use of random regression model as an alternative for multibreed relationship matrix. J Anim Breed Genet 130(1):4–9CrossRefGoogle Scholar
  38. Technow F, Burger A, Melchinger A E (2013) Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. Genes–Genomes–Genetics 3(2):197–203PubMedGoogle Scholar
  39. Thornton T, Tang H, Thomas J, Heather M, Bette J, Risch N (2012) Estimating kinship in admixed populations. Am J Hum Genet 91:122–138CrossRefGoogle Scholar
  40. Toosi A, Fernando R, Dekkers J (2013) Genomic selection in admixed and crossbred populations. J Anim Sci 130(1):10–19Google Scholar
  41. Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom TM, Fries R, Pausch H, Bertani C, Davassi A, Mayer KF, Schön C-C (2014) A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics 15(1):823CrossRefGoogle Scholar
  42. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423CrossRefGoogle Scholar
  43. Wientjes YC, Veerkamp RF, Bijma P, Bovenhuis H, Schrooten C, Calus MP (2015a) Empirical and deterministic accuracies of across-population genomic prediction. Genet Select Evol 47(1):5CrossRefGoogle Scholar
  44. Wientjes YC, Veerkamp RF, Calus MP (2015b) Using selection index theory to estimate consistency of multi-locus linkage disequilibrium across populations. BMC Genet 16(1):87CrossRefGoogle Scholar
  45. Wientjes YCJ, Bijma P, Vandenplas J, Calus MPL (2017) Multi-population genomic relationships for estimating current genetic variances within and genetic correlations between populations. Genetics 207(2):503–515PubMedPubMedCentralGoogle Scholar
  46. Wientjes YCJ, Bijma P, Veerkamp RF, Calus MPL (2016) An equation to predict the accuracy of genomic values by combining data from multiple traits, populations, or environments. Genetics 202(2):799–823CrossRefGoogle Scholar
  47. Wientjes YCJ, Calus MPL, Hayes BJ, Goddard ME, Hayes BJ (2015c) Impact of QTL properties on the accuracy of multi-breed genomic prediction. Genet Select Evol 47(1):42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Simon Rio
    • 1
  • Tristan Mary-Huard
    • 1
    • 2
  • Laurence Moreau
    • 1
  • Alain Charcosset
    • 1
    Email author
  1. 1.GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTechUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.MIA, INRA, AgroParisTechUniversité Paris-SaclayParisFrance

Personalised recommendations