Advertisement

Theoretical and Applied Genetics

, Volume 131, Issue 12, pp 2581–2599 | Cite as

Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure

  • Liyuan Pan
  • Jianbo He
  • Tuanjie Zhao
  • Guangnan Xing
  • Yufeng Wang
  • Deyue Yu
  • Shouyi Chen
  • Junyi GaiEmail author
Original Article

Abstract

Key message

Eighty-six R1 QTLs accounting for 89.92% phenotypic variance in a soybean RIL population were identified using RTM-GWAS with SNPLDB marker which performed superior over CIM and MLM-GWAS with BIN/SNPLDB marker.

Abstract

A population (NJRIKY) composed of 427 recombinant inbred lines (RILs) derived from Kefeng-1 × NN1138-2 (MGII × MGV, MG maturity group) was applied for detecting flowering date (R1) quantitative trait locus (QTL) system in soybean. From a low-depth re-sequencing (~ 0.75 ×), 576,874 SNPs were detected and organized into 4737 BINs (recombination breakpoint determinations) and 3683 SNP linkage disequilibrium blocks (SNPLDBs), respectively. Using the association mapping procedures “Restricted Two-stage Multi-locus Genome-wide Association Study” (RTM-GWAS), “Mixed Linear Model Genome-wide Association Study” (MLM-GWAS) and the linkage mapping procedure “Composite Interval Mapping” (CIM), 67, 36 and 10 BIN-QTLs and 86, 14 and 23 SNPLDB-QTLs were detected with their phenotypic variance explained (PVE) 88.70–89.92% (within heritability 98.2%), 146.41–353.62% (overflowing) and 88.29–172.34% (overflowing), respectively. The RTM-GWAS with SNPLDBs which showed to be more efficient and reasonable than the others was used to identify the R1 QTL system in NJRIKY. The detected 86 SNPLDB-QTLs with their PVE from 0.02 to 30.66% in a total of 89.92% covered 51 out of 104 R1 QTLs in 18 crosses in SoyBase and 26 out of 139 QTLs in a nested association mapping population, while the rest 29 QTLs were novel ones. From the QTL system, 52 candidate genes were annotated, including the verified gene E1, E2, E9 and J, and grouped into 3 categories of biological processes, among which 24 genes were enriched into three protein–protein interaction networks, suggesting gene networks working together. Since NJRIKY involves only MGII and MGV, the QTL/gene system among MG000–MGX should be explored further.

Notes

Acknowledgments

This work was financially supported through the grants from the National Key R&D Program for Crop Breeding in China (2017YFD0101500), the Natural Science Foundation of China (31701447), the MOE 111 Project (B08025), the MOE Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT_17R55), the MOA CARS-04 program, the Jiangsu Higher Education PAPD Program, the Fundamental Research Funds for the Central Universities and the Jiangsu JCIC-MCP. The funders had no role in work design, data collection and analysis, and decision and preparation of the manuscript. We would thank the State Key Laboratory of Agricultural Genomics (BGI-Shenzhen, Shenzhen 518083, China) for their service in sequencing the materials. Specific thanks go to Dr. Hans-Peter Piepho for providing consulting in calculation the adjusted heritabilities for unbalanced data.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

122_2018_3174_MOESM1_ESM.docx (396 kb)
Supplementary material 1 (DOCX 395 kb)

References

  1. Alvarez-Buylla ER, Azpeitia E, Barrio R, Benitez M, Padilla-Longoria P (2010) From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches. Semin Cell Dev Biol 21:108–117PubMedGoogle Scholar
  2. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631PubMedPubMedCentralGoogle Scholar
  3. Barabaschi D, Guerra D, Lacrima K, Laino P, Michelotti V, Urso S, Vale G, Cattivelli L (2012) Emerging knowledge from genome sequencing of crop species. Mol Biotechnol 50:250–266PubMedGoogle Scholar
  4. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefGoogle Scholar
  5. Beckmann L, Fischer C, Obreiter M, Rabes M, Chang-Claude J (2005) Haplotype-sharing analysis using Mantel statistics for combined genetic effects. BMC Genet 6(Suppl 1):S70PubMedPubMedCentralGoogle Scholar
  6. Bernard R (1971) Two major genes for time of flowering and maturity in soybeans. Crop Sci 11:242–244Google Scholar
  7. Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170PubMedPubMedCentralGoogle Scholar
  8. Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232Google Scholar
  9. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedGoogle Scholar
  10. Broman KW, Speed TP (1999) A review of methods for identifying QTLs in experimental crosses. Institute of Mathematical Statistics, HaywardGoogle Scholar
  11. Buzzell R (1971) Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol 13:703–707Google Scholar
  12. Buzzell R, Voldeng H (1980) Inheritance of insensitivity to long daylength. Soybean Genet Newsl 7:26–29Google Scholar
  13. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  14. Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701Google Scholar
  15. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70PubMedPubMedCentralGoogle Scholar
  16. Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine Max (L.) Merrill. Merrill Crop Sci 11:929–931Google Scholar
  17. Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. TAG Theor Appl Genet Theoretische und angewandte Genetik 111:851–861PubMedGoogle Scholar
  18. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229PubMedGoogle Scholar
  19. Gai J (2013) Quantitative inheritance. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics, vol 6, 2nd edn. Academic Press, San Diego, pp 18–21Google Scholar
  20. Gai J, Wang Y, Zhang M, Wang J, Chang R (2001) Studies on the classification of maturity groups of soybeans in China. Acta Agron Sin 27:286–292Google Scholar
  21. Gai J, Wang Y, Wu X, Chen S (2007) A comparative study on segregation analysis and QTL mapping of quantitative traits in plants—with a case in soybean. Front Agric China 1:1–7Google Scholar
  22. Githiri SM, Yang D, Khan NA, Xu D, Komatsuda T, Takahashi R (2007) QTL analysis of low temperature induced browning in soybean seed coats. J Hered 98:360–366PubMedGoogle Scholar
  23. Hanson WD (1985) Association of seed yield with partitioned lengths of the reproductive period in soybean genotypes. Crop Sci 25:525–529Google Scholar
  24. Harris RS (2007) Ph.D. Thesis: improved pairwise alignment of genomic DNA. Dissertations & Theses—GradworksGoogle Scholar
  25. He J, Meng S, Zhao T, Xing G, Yang S, Li Y, Guan R, Lu J, Wang Y, Xia Q, Yang B, Gai J (2017) An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. TAG Theor Appl Genet Theoretische und angewandte Genetik 130:2327–2343PubMedGoogle Scholar
  26. Hisano H, Sato S, Isobe S, Sasamoto S, Wada T, Matsuno A, Fujishiro T, Yamada M, Nakayama S, Nakamura Y, Watanabe S, Harada K, Tabata S (2007) Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res 14:271–281PubMedGoogle Scholar
  27. Hu H, Liu W, Fu Z, Homann L, Technow F, Wang H, Song C, Li S, Melchinger AE, Chen S (2013) QTL mapping of stalk bending strength in a recombinant inbred line maize population. TAG Theor Appl Genet Theoretische und angewandte Genetik 126:2257–2266PubMedGoogle Scholar
  28. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076PubMedPubMedCentralGoogle Scholar
  29. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205PubMedPubMedCentralGoogle Scholar
  30. Jourjon MF, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130PubMedGoogle Scholar
  31. Jun TH, Freewalt K, Michel AP, Mian R (2014) Identification of novel QTL for leaf traits in soybean. Plant Breed 133:61–66Google Scholar
  32. Kantolic AG, Slafer GA (2001) Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars. Field Crops Res 72:109–118Google Scholar
  33. Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231PubMedPubMedCentralGoogle Scholar
  34. Kong FJ, Nan HY, Cao D, Li Y, Wu FF, Wang JL, Lu SJ, Yuan XH, Cober ER, Abe J, Liu BH (2014) A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci 54:2529–2535Google Scholar
  35. Kuroda Y, Kaga A, Tomooka N, Yano H, Takada Y, Kato S, Vaughan D (2013) QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecol Evol 3:2150–2168PubMedPubMedCentralGoogle Scholar
  36. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  37. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760PubMedPubMedCentralGoogle Scholar
  38. Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. TAG Theor Appl Genet Theoretische und angewandte Genetik 116:243–260PubMedGoogle Scholar
  39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedPubMedCentralGoogle Scholar
  40. Li H, Hearne S, Banziger M, Li Z, Wang J (2010a) Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 105:257–267PubMedGoogle Scholar
  41. Li HH, Zhang LY, Wang JK (2010b) Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin 36:918–931Google Scholar
  42. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50PubMedGoogle Scholar
  43. Li S, Cao Y, He J, Zhao T, Gai J (2017) Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. TAG Theor Appl Genet Theoretische und angewandte Genetik 130:2297–2314PubMedGoogle Scholar
  44. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007PubMedPubMedCentralGoogle Scholar
  45. Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210PubMedPubMedCentralGoogle Scholar
  46. Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober ER, Weller JL, Liu B, Hou X, Tian Z, Kong F (2017) Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49:773–779PubMedGoogle Scholar
  47. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63PubMedGoogle Scholar
  48. Malosetti M, van Eeuwijk FA, Boer MP, Casas AM, Elia M, Moralejo M, Bhat PR, Ramsay L, Molina-Cano JL (2011) Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. TAG Theor Appl Genet Theoretische und angewandte Genetik 122:1605–1616PubMedGoogle Scholar
  49. Mcblain BA, Bernard RL (1987) A new gene affecting the time of flowering and maturity in soybeans. J Hered 78:160–162Google Scholar
  50. Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T (2003) The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol 44:1229–1236PubMedGoogle Scholar
  51. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedPubMedCentralGoogle Scholar
  52. Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38:63–67PubMedGoogle Scholar
  53. Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant-populations. Crit Rev Plant Sci 10:235–322Google Scholar
  54. O’Maoileidigh DS, Graciet E, Wellmer F (2014) Gene networks controlling Arabidopsis thaliana flower development. New Phytol 201:16–30PubMedGoogle Scholar
  55. Ooijen JWV (2006) JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental population. Kyazma BV, WageningenGoogle Scholar
  56. Ooijen JWV, Ooijen J, Ooijen JW (2009) MapQTL 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Kyazma BVGoogle Scholar
  57. Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651Google Scholar
  58. Piepho HP, Mohring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888PubMedPubMedCentralGoogle Scholar
  59. Rakitsch B, Lippert C, Stegle O, Borgwardt K (2013) A Lasso multi-marker mixed model for association mapping with population structure correction. Bioinformatics 29:206–214PubMedGoogle Scholar
  60. Ray JD, Hinson K, Mankono JEB, Malo MF (1995) Genetic-control of a long-juvenile trait in soybean. Crop Sci 35:1001–1006Google Scholar
  61. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183PubMedGoogle Scholar
  62. Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830PubMedPubMedCentralGoogle Scholar
  63. Shinozuka H, Cogan NO, Smith KF, Spangenberg GC, Forster JW (2010) Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72:343–355PubMedGoogle Scholar
  64. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452Google Scholar
  65. Tasma IM, Lorenzen LL, Green DE, Shoemaker RC (2001) Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed 8:25–35Google Scholar
  66. Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA 107:8563–8568PubMedGoogle Scholar
  67. Verbyla AP, George AW, Cavanagh CR, Verbyla KL (2014) Whole-genome QTL analysis for MAGIC. TAG Theor Appl Genet Theoretische und angewandte Genetik 127:1753–1770PubMedGoogle Scholar
  68. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22PubMedPubMedCentralGoogle Scholar
  69. Wang Y (2009) Genomic characterization of simple sequence repeats and establishment, integration and application of high density genetic linkage map in soybean. Ph.D. Dissertation, Nanjing Agricultural University (in Chinese) Google Scholar
  70. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082PubMedGoogle Scholar
  71. Wang Y, Wu X, He C, Zhang J, Chen S, Gai J (2003) A soybean genetic linkage map constructed after the mapping population being tested and adjusted. Sci Agric Sin 11:3Google Scholar
  72. Wang L, Wang AH, Huang XH, Zhao QA, Dong GJ, Qian QA, Sang T, Han B (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122:327–340PubMedGoogle Scholar
  73. Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262PubMedPubMedCentralGoogle Scholar
  74. Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407PubMedPubMedCentralGoogle Scholar
  75. Watanabe S, Harada K, Abe J (2012) Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci 61:531–543PubMedPubMedCentralGoogle Scholar
  76. Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164PubMedGoogle Scholar
  77. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107:10578–10583PubMedGoogle Scholar
  78. Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 110:13469–13474PubMedGoogle Scholar
  79. Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8:61–72PubMedGoogle Scholar
  80. Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723PubMedGoogle Scholar
  81. Yasui Y, Tanaka W, Sakamoto T, Kurata T, Hirano HY (2017) Genetic enhancer analysis reveals that FLORAL ORGAN NUMBER2 and OsMADS3 co-operatively regulate maintenance and determinacy of the flower meristem in rice. Plant Cell Physiol 58:893–903PubMedGoogle Scholar
  82. Yoshikawa T, Ito M, Sumikura T, Nakayama A, Nishimura T, Kitano H, Yamaguchi I, Koshiba T, Hibara K, Nagato Y, Itoh J (2014) The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J 78:927–936PubMedGoogle Scholar
  83. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedPubMedCentralGoogle Scholar
  84. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar
  85. Zhang K, Deng M, Chen T, Waterman MS, Sun F (2002) A dynamic programming algorithm for haplotype block partitioning. Proc Natl Acad Sci USA 99:7335–7339PubMedGoogle Scholar
  86. Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139PubMedGoogle Scholar
  87. Zhang Y, He J, Wang Y, Xing G, Zhao J, Li Y, Yang S, Palmer RG, Zhao T, Gai J (2015a) Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J Exp Bot 66:6311–6325PubMedGoogle Scholar
  88. Zhang YH, Liu MF, He JB, Wang YF, Xing GN, Li Y, Yang SP, Zhao TJ, Gai JY (2015b) Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr]. TAG Theor Appl Genet Theoretische und angewandte Genetik 128:1061–1072PubMedGoogle Scholar
  89. Zhao H, Pfeiffer R, Gail MH (2003) Haplotype analysis in population genetics and association studies. Pharmacogenomics 4:171–178PubMedGoogle Scholar
  90. Zhao C, Takeshima R, Zhu J, Xu M, Sato M, Watanabe S, Kanazawa A, Liu B, Kong F, Yamada T, Abe J (2016) A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol 16:20PubMedPubMedCentralGoogle Scholar
  91. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414PubMedGoogle Scholar
  92. Zuo QM, Hou JF, Zhou B, Wen ZX, Zhang SY, Gai JY, Xing H (2013) Identification of QTLs for growth period traits in soybean using association analysis and linkage mapping. Plant Breed 132:317–323Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liyuan Pan
    • 1
    • 2
    • 3
    • 4
  • Jianbo He
    • 1
    • 2
    • 3
    • 4
  • Tuanjie Zhao
    • 1
    • 2
    • 3
    • 4
  • Guangnan Xing
    • 1
    • 2
    • 3
    • 4
  • Yufeng Wang
    • 1
    • 2
  • Deyue Yu
    • 1
    • 2
    • 3
    • 4
  • Shouyi Chen
    • 5
  • Junyi Gai
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Soybean Research InstituteNanjing Agricultural UniversityNanjingChina
  2. 2.National Center for Soybean ImprovementMinistry of AgricultureNanjingChina
  3. 3.Key Laboratory of Biology and Genetic Improvement of SoybeanMinistry of AgricultureNanjingChina
  4. 4.National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
  5. 5.State Key Lab of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations