Advertisement

Theoretical and Applied Genetics

, Volume 131, Issue 11, pp 2413–2425 | Cite as

A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton

  • Zhengwen Sun
  • Xingfen Wang
  • Zhengwen Liu
  • Qishen Gu
  • Yan Zhang
  • Zhikun Li
  • Huifeng Ke
  • Jun Yang
  • Jinhua Wu
  • Liqiang Wu
  • Guiyin Zhang
  • Caiying ZhangEmail author
  • Zhiying MaEmail author
Original Article

Abstract

Key message

A total of 62 SNPs associated with yield-related traits were identified by a GWAS. Based on significant SNPs, two candidate genes pleiotropically increase lint yield.

Abstract

Improved fibre yield is considered a constant goal of upland cotton (Gossypium hirsutum) breeding worldwide, but the understanding of the genetic basis controlling yield-related traits remains limited. To better decipher the molecular mechanism underlying these traits, we conducted a genome-wide association study to determine candidate loci associated with six yield-related traits in a population of 719 upland cotton germplasm accessions; to accomplish this, we used 10,511 single-nucleotide polymorphisms (SNPs) genotyped by an Illumina CottonSNP63K array. Six traits, including the boll number, boll weight, lint percentage, fruit branch number, seed index and lint index, were assessed in multiple environments; large variation in all phenotypes was detected across accessions. We identified 62 SNP loci that were significantly associated with different traits on chromosomes A07, D03, D05, D09, D10 and D12. A total of 689 candidate genes were screened, and 27 of them contained at least one significant SNP. Furthermore, two genes (Gh_D03G1064 and Gh_D12G2354) that pleiotropically increase lint yield were identified. These identified SNPs and candidate genes provide important insights into the genetic control underlying high yields in G. hirsutum, ultimately facilitating breeding programmes of high-yielding cotton.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFD0101405), the China Agriculture Research System (CARS-18-08), the Science and Technology Support Program of Hebei Province (16226307D) and the Top Talent Fund of Hebei Province.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments were performed in compliance with the current laws of China.

Supplementary material

122_2018_3162_MOESM1_ESM.docx (3.7 mb)
Figure S1. Manhattan plots showing the GWAS results for BN per plant in different environments. Figure S2. Manhattan plots showing the GWAS results for BW in different environments. Figure S3. Manhattan plots showing the GWAS results for LP in different environments. Figure S4. Manhattan plots showing the GWAS results for FBN per plant in different environments. Figure S5. Manhattan plots showing the GWAS results for the SI in different environments. Figure S6. Manhattan plots showing the GWAS results for the LI in different environments. (DOCX 3772 kb)
122_2018_3162_MOESM2_ESM.xlsx (280 kb)
Table S1. Phenotypic variation for six yield-related traits in the association population. Table S2. ANOVA results for and H2 of six yield-related traits. Table S3. Summary of SNPs that are significantly associated with six yield-related traits. Table S4. List of all 689 candidate genes associated with yield-related traits. Table S5. KEGG pathway and GO analysis results of all candidate genes involved in yield-related traits. Table S6. List of candidate genes in the top five KEGG pathways. (XLSX 279 kb)

References

  1. Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Saha S, Scheffler BE, Jenkins JN, Abdukarimov A (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92:478–487CrossRefGoogle Scholar
  2. Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel RJ, Abdukarimov A (2009) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136:401–417CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  4. An C, Jenkins JN, Wu J, Guo Y, McCarty JC (2009) Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton. Euphytica 172:21–34CrossRefGoogle Scholar
  5. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefGoogle Scholar
  6. Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar PA, Mehboob Ur R, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310CrossRefGoogle Scholar
  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  8. George AW, Cavanagh C (2015) Genome-wide association mapping in plants. Theor Appl Genet 128:1163–1174CrossRefGoogle Scholar
  9. Geraldo N, Baurle I, Kidou S, Hu X, Dean C (2009) FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol 150:1611–1618CrossRefGoogle Scholar
  10. Gore MA, Fang DD, Poland JA, Zhang J, Percy RG, Cantrell RG, Thyssen G, Lipka AE (2014) Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. Plant Genome 7:1–10CrossRefGoogle Scholar
  11. Han Y, Zhao X, Liu D, Li Y, Lightfoot DA, Yang Z, Zhao L, Zhou G, Wang Z, Huang L, Zhang Z, Qiu L, Zheng H, Li W (2015) Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol 209:871CrossRefGoogle Scholar
  12. Heo JB, Rho HS, Kim SW, Hwang SM, Kwon HJ, Nahm MY, Bang WY, Bahk JD (2005) OsGAP1 functions as a positive regulator of OsRab11-mediated TGN to PM or vacuole trafficking. Plant Cell Physiol 46:2005–2018CrossRefGoogle Scholar
  13. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551CrossRefGoogle Scholar
  14. Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B (2016) Genomic architecture of heterosis for yield traits in rice. Nature 537:629–633CrossRefGoogle Scholar
  15. Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, Frelichowski J, Giband M, Hague S, Hinze LL, Kochan KJ, Riggs PK, Scheffler JA, Udall JA, Ulloa M, Wang SS, Zhu QH, Bag SK, Bhardwaj A, Burke JJ, Byers RL, Claverie M, Gore MA, Harker DB, Islam MS, Jenkins JN, Jones DC, Lacape JM, Llewellyn DJ, Percy RG, Pepper AE, Poland JA, Mohan Rai K, Sawant SV, Singh SK, Spriggs A, Taylor JM, Wang F, Yourstone SM, Zheng X, Lawley CT, Ganal MW, Van Deynze A, Wilson IW, Stelly DM (2015) Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 (Bethesda) 5:1187–1209CrossRefGoogle Scholar
  16. Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922CrossRefGoogle Scholar
  17. Jia Y, Sun J, Wang X, Zhou Z, Pan Z, He S, Pang B, Wang L, Du X (2014a) Molecular diversity and association analysis of drought and salt tolerance in Gossypium hirsutum L. Germplasm. J Integr Agric 13:1845–1853CrossRefGoogle Scholar
  18. Jia Y, Sun X, Sun J, Pan Z, Wang X, He S, Xiao S, Shi W, Zhou Z, Pang B, Wang L, Liu J, Ma J, Du X, Zhu J (2014b) Association mapping for epistasis and environmental interaction of yield traits in 323 cotton cultivars under 9 different environments. PLoS ONE 9:e95882CrossRefGoogle Scholar
  19. Johanson U (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in arabidopsis flowering time. Science 290:344–347CrossRefGoogle Scholar
  20. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29CrossRefGoogle Scholar
  21. Liu R, Wang B, Guo W, Qin Y, Wang L, Zhang Y, Zhang T (2012) Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breed 29:297–311CrossRefGoogle Scholar
  22. Mengistu DK, Kidane YG, Catellani M, Frascaroli E, Fadda C, Pe ME, Dell’Acqua M (2016) High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol J 14:1800–1812CrossRefGoogle Scholar
  23. Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM, Amas J, Dorph K, Barretto A, Gross B, Fuller DQ, Bimpong IK, Ndjiondjop MN, Hazzouri KM, Gregorio GB, Purugganan MD (2016) Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet 48:1083–1088CrossRefGoogle Scholar
  24. Nie X, Huang C, You C, Li W, Zhao W, Shen C, Zhang B, Wang H, Yan Z, Dai B, Wang M, Zhang X, Lin Z (2016) Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genom 17:352CrossRefGoogle Scholar
  25. Park MY, Kim SY (2014) The Arabidopsis J protein AtJ1 is essential for seedling growth, flowering time control and ABA response. Plant Cell Physiol 55:2152–2163CrossRefGoogle Scholar
  26. Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396CrossRefGoogle Scholar
  27. Qin H, Guo W, Zhang YM, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117:883–894CrossRefGoogle Scholar
  28. Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis ES, Balasubramanian S (2015) Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ 39:1228CrossRefGoogle Scholar
  29. Rothnie A, Clarke AR, Kuzmic P, Cameron A, Smith CJ (2011) A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin. Proc Natl Acad Sci USA 108:6927–6932CrossRefGoogle Scholar
  30. Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang J (2015) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics 290:1003–1025CrossRefGoogle Scholar
  31. Su J, Fan S, Li L, Wei H, Wang C, Wang H, Song M, Zhang C, Gu L, Zhao S, Mao G, Wang C, Pang C, Yu S (2016a) Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Front Plant Sci 7:1576PubMedPubMedCentralGoogle Scholar
  32. Su J, Li L, Pang C, Wei H, Wang C, Song M, Wang H, Zhao S, Zhang C, Mao G, Huang L, Wang C, Fan S, Yu S (2016b) Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Sci Rep 6:38496CrossRefGoogle Scholar
  33. Su J, Pang C, Wei H, Li L, Liang B, Wang C, Song M, Wang H, Zhao S, Jia X, Mao G, Huang L, Geng D, Wang C, Fan S, Yu S (2016c) Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genom 17:687CrossRefGoogle Scholar
  34. Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L, Zhang G, Zhang C, Ma Z (2017) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15:982–996CrossRefGoogle Scholar
  35. Tafesse FG, Guimaraes CP, Maruyama T, Carette JE, Lory S, Brummelkamp TR, Ploegh HL (2014) GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin. J Biol Chem 289:24005–24018CrossRefGoogle Scholar
  36. Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze WX, Paz-Ares J, Scheible WR, Kragler F (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 1:15025CrossRefGoogle Scholar
  37. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162CrossRefGoogle Scholar
  38. Turner SD (2014) qqman: an R package for visualizing GWAS results using Q–Q and manhattan plots. Biorxiv.  https://doi.org/10.1101/005165
  39. Vollmer AH, Youssef NN, Dewald DB (2011) Unique cell wall abnormalities in the putative phosphoinositide phosphatase mutant AtSAC9. Planta 234:993–1005CrossRefGoogle Scholar
  40. Wang H, Huang C, Guo H, Li X, Zhao W, Dai B, Yan Z, Lin Z (2015) QTL mapping for fiber and yield traits in upland cotton under multiple environments. PLoS ONE 10:e0130742CrossRefGoogle Scholar
  41. Wu J, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2008) Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica 165:231–245CrossRefGoogle Scholar
  42. Würschum T, Leiser WL, Kazman E, Longin CFH (2016) Genetic control of protein content and sedimentation volume in European winter wheat cultivars. Theor Appl Genet 129:1685–1696CrossRefGoogle Scholar
  43. Xia Z, Zhang X, Liu Y, Jia Z, Zhao H, Li C, Wang Q (2014) Major gene identification and quantitative trait locus mapping for yield-related traits in upland cotton (Gossypium hirsutum L.). J Integr Agric 13:299–309CrossRefGoogle Scholar
  44. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322CrossRefGoogle Scholar
  45. Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2016) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52PubMedGoogle Scholar
  46. Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10:e1004573CrossRefGoogle Scholar
  47. Zhang JF, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201Google Scholar
  48. Zhang HB, Li Y, Wang B, Chee PW (2008) Recent advances in cotton genomics. Int J Plant Genom 2008:742304Google Scholar
  49. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360CrossRefGoogle Scholar
  50. Zhang W, Liu F, Li S, Wang W, Wang C, Zhang X, Wang Y, Wang K (2011) QTL analysis on yield and its components in upland cotton RIL. Acta Agron Sin 37:433–442Google Scholar
  51. Zhang J, Singh A, Mueller DS, Singh AK (2015a) Genome-wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean. Plant J 84:1124CrossRefGoogle Scholar
  52. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015b) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537CrossRefGoogle Scholar
  53. Zhao Y, Wang H, Chen W, Li Y (2014) Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS ONE 9:e86308CrossRefGoogle Scholar
  54. Zhiyuan N, Chen H, Mei H, Zhang T (2014) Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica 195:143–156CrossRefGoogle Scholar
  55. Zhu T, Liang C, Meng Z, Sun G, Meng Z, Guo S, Zhang R (2017) CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol 17:101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhengwen Sun
    • 1
  • Xingfen Wang
    • 1
  • Zhengwen Liu
    • 1
  • Qishen Gu
    • 1
  • Yan Zhang
    • 1
  • Zhikun Li
    • 1
  • Huifeng Ke
    • 1
  • Jun Yang
    • 1
  • Jinhua Wu
    • 1
  • Liqiang Wu
    • 1
  • Guiyin Zhang
    • 1
  • Caiying Zhang
    • 1
    Email author
  • Zhiying Ma
    • 1
    Email author
  1. 1.North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina

Personalised recommendations