Theoretical and Applied Genetics

, Volume 131, Issue 10, pp 2131–2144 | Cite as

Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize

  • Zhenhai Cui
  • Aiai Xia
  • Ao Zhang
  • Jinhong Luo
  • Xiaohong Yang
  • Lijun Zhang
  • Yanye Ruan
  • Yan He
Original Article


Key message Combined linkage and association mapping analyses facilitate the emphasis on the candidate genes putatively involved in maize husk growth.


The maize (Zea mays L.) husk consists of multiple leafy layers and plays important roles in protecting the ear from pathogen infection and in preventing grain dehydration. Although husk morphology varies widely among different maize inbred lines, the genetic basis of such variation is poorly understood. In this study, we used three maize recombinant inbred line (RIL) populations to dissect the genetic basis of three husk traits: i.e., husk length (HL), husk width (HW), and the number of husk layers (HN). Three husk traits in all three RIL populations showed wide phenotypic variation and high heritability. The HL showed stronger correlations with ear traits than did HW and HN. A total of 21 quantitative trait loci (QTL) were identified for the three traits in three RIL populations, and some of them were commonly observed for the same trait in different populations. The proportions of total phenotypic variation explained by QTL in three RIL populations were 31.8, 35.3, and 44.5% for HL, HW, and HN, respectively. The highest proportions of phenotypic variation explained by a single QTL were 14.7% for HL in the By815/K22 RIL population (BYK), 13.5% for HW in the By815/DE3 RIL population (BYD), and 19.4% for HN in the BYD population. A combined analysis of linkage mapping with a previous genome-wide association study revealed five candidate genes related to husk morphology situated within three QTL loci. These five genes were related to metabolism, gene expression regulation, and signal transduction.



We thank all members of our laboratories for the helpful assistances and discussions during the research. This work was supported by National Natural Science Foundation of China (31771880) to ZC, National Program on Key Basic Research Project of China (973Program: 2014CB147300) to YH, Technology Pillar Program of Liaoning Province, China (2015103001), to YR, and the National Key Research and Development Program of China (2016YFD0101803) to LZ.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2018_3142_MOESM1_ESM.docx (186 kb)
Supplementary material 1 (DOCX 185 kb)


  1. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631CrossRefPubMedPubMedCentralGoogle Scholar
  2. Austin DF, Lee M (1998) Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38:1296–1308CrossRefGoogle Scholar
  3. Bauer P, Freeling M (2004) Regulation and a conserved intron sequence of liguleless3/4 knox class-I homeobox genes in grasses. Planta 219:359–368CrossRefGoogle Scholar
  4. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162Google Scholar
  5. Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858CrossRefGoogle Scholar
  6. Bolduc N, Yilmaz A, Mejiaguerra MK, Morohashi K, O’Connor D, Grotewold E, Hake S (2012) Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev 26:1685CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buckler ES, Mcmullen MD (2009) The genetic architecture of maize flowering time. Science 325:714CrossRefGoogle Scholar
  9. Cao A, Santiago R, Ramos AJ, Souto XC, Aguin O, Malvar RA, Butron A (2014) Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. Int J Food Microbiol 177:63–71CrossRefGoogle Scholar
  10. Cary JW, Harris-Coward P, Scharfenstein L, Mack BM, Chang PK, Wei Q, Lebar M, Carter-Wientjes C, Majumdar R, Mitra C (2017) The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production. Toxins 9:315CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F(2) maize population. BMC Genom 15:433CrossRefGoogle Scholar
  12. Chen HP, Zhao YT, Zhao TC (2015) Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog 20:35CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cho S-H, Yoo S-C, Haitao Z, Pandeya D, Koh HJ, Hwang JY, Kim GT, Paek NC (2013) The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol 198:1071–1084CrossRefGoogle Scholar
  14. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  15. Cui Z, Luo J, Qi C, Ruan Y, Li J, Zhang A, Yang X, He Y (2016) Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genom 17:946CrossRefGoogle Scholar
  16. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARHTA GENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704CrossRefGoogle Scholar
  17. Dengler NG, Tsukaya H (2001) Leaf morphogenesis in dicotyledons: current issues. Int J Plant Sci 162:459–464CrossRefGoogle Scholar
  18. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202Google Scholar
  19. Ferreira A, Silva MFd, LdCe Silva, Cruz CD (2006) Estimating the effects of population size and type on the accuracy of genetic maps. Genet Mol Biol 29:187–192CrossRefGoogle Scholar
  20. Flint-Garcia SA, Thornsberry JM (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357CrossRefGoogle Scholar
  21. Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878CrossRefGoogle Scholar
  22. Furumizu C, Alvarez JP, Sakakibara K, Bowman JL (2015) Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet 11:e1004980CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schon CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77CrossRefGoogle Scholar
  25. Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127:2149–2158CrossRefGoogle Scholar
  26. Guo SL, Ku LX, Qi JS, Tian ZQ, Han T, Zhang LK, Su HH, Ren ZZ, Chen YH (2015) Genetic analysis and major quantitative trait locus mapping of leaf widths at different positions in multiple populations. PLoS ONE 10:e0119095CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hallauer AR, Carena MJ, Miranda Filho JB (2010) Quantitative genetics in maize breeding, 3rd edn. Springer, New YorkGoogle Scholar
  28. Hamilton AJ, Baulcombe DC (1999) a species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952CrossRefGoogle Scholar
  29. Hayes B, Goddard ME (2001) The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol 33:209–229CrossRefPubMedPubMedCentralGoogle Scholar
  30. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huang CF, Yu CP, Wu YH, Lu MJ, Tu SL, Wu SH, Shiu SH, Msb K, Li WH (2017) Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves. Proc Natl Acad Sci USA 114:E6884CrossRefGoogle Scholar
  32. Hur YS, Um JH, Kim S, Kim K, Park HJ, Lim JS, Kim WY, Jun SE, Yoon EK, Lim J (2015) Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytol 205:316–328CrossRefGoogle Scholar
  33. Ishiwata A, Ozawa M, Nagasaki H, Kato M, Noda Y, Yamaguchi T, Nosaka M, Shimizu-Sato S, Nagasaki A, Maekawa M (2013) Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice. Plant Cell Physiol 54:779–792CrossRefGoogle Scholar
  34. Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, O’Brien SJ (2010) Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genom 11:724CrossRefGoogle Scholar
  35. Josè M, Puigdomènech P (1993) Structure and expression of genes coding for structural proteins of the plant cell wall. New Phytol 125:259–282CrossRefGoogle Scholar
  36. Kang MS, Zuber MS (1989) Combining ability for grain moisture, husk moisture, and maturity in maize with yellow and white endosperms. Cropence 29:689–692Google Scholar
  37. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216PubMedPubMedCentralGoogle Scholar
  38. Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194CrossRefGoogle Scholar
  39. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246CrossRefGoogle Scholar
  40. Korir PC, Zhang J, Wu K, Zhao T, Gai J (2013) Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjiang River Valleys in China. Theor Appl Genet 126:1659–1675CrossRefGoogle Scholar
  41. Kramer EM, Ackelsberg EM (2015) Auxin metabolism rates and implications for plant development. Front Plant Sci 6:150PubMedPubMedCentralGoogle Scholar
  42. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  43. Langdale JA, Zelitch I, Miller E, Nelson T (1988) Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize. EMBO J 7:3643–3651CrossRefPubMedPubMedCentralGoogle Scholar
  44. Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9:e1003246CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population. Plant Mol Biol 48:453–461CrossRefGoogle Scholar
  46. Lee HJ, Park YJ, Ha JH, Baldwin IT, Park CM (2017) Multiple routes of light signaling during root photomorphogenesis. Trends Plant Sci 22:803–812CrossRefGoogle Scholar
  47. Li MX, Yeung JM, Cherny SS, Sham PC (2012a) Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131:747–756CrossRefGoogle Scholar
  48. Li Q, Yang X, Xu S, Cai Y, Zhang D, Han Y, Li L, Zhang Z, Gao S, Li J, Yan J (2012b) Genome-wide association studies identified three independent polymorphisms associated with alpha-tocopherol content in maize kernels. PLoS ONE 7:e36807CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50CrossRefGoogle Scholar
  50. Li C, Shen Y, Meeley R, Mccarty DR, Tan BC (2015) Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. Plant J 84:785CrossRefGoogle Scholar
  51. Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C, Tian J, Wu Y, Tian F (2016a) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol 210:256–268CrossRefGoogle Scholar
  52. Li J, Fu J, Chen Y, Fan K, He C, Zhang Z, Li L, Liu Y, Zheng J, Ren D (2016b) The U6 Biogenesis-Like 1 Plays an Important Role in Maize Kernel and Seedling Development by Affecting the 3’ End Processing of U6 snRNA. Mol Plant 10:470–482CrossRefGoogle Scholar
  53. Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, Ma J, Wang S, Zhang X, Xia Z, Chen J, Wu J (2016c) Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci 7:833PubMedPubMedCentralGoogle Scholar
  54. Liu C, Zhou Q, Dong L, Wang H, Liu F, Weng J, Li X, Xie C (2016) Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genom 17:915CrossRefGoogle Scholar
  55. Liu J, Huang J, Guo H, Lan L, Wang H, Xu Y, Yang X, Li W, Tong H, Xiao Y (2017) The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol 175:774PubMedPubMedCentralGoogle Scholar
  56. Luo M, Zhao Y, Zhang R, Xing J, Duan M, Li J, Wang N, Wang W, Zhang S, Chen Z (2017) Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol 17:140CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mahuku G, Chen J, Shrestha R, Narro LA, Guerrero KV, Arcos AL, Xu Y (2016) Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. Theor Appl Genet 129:1217–1229CrossRefGoogle Scholar
  58. Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran LS, Qin F (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326CrossRefPubMedPubMedCentralGoogle Scholar
  59. Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human population structure on large genetic association studies. Nat Genet 36:512–517CrossRefGoogle Scholar
  60. Mazau D, Rumeau D, Esquerre-Tugaye MT (1988) Two different families of hydroxyproline-rich glycoproteins in melon callus: biochemical and immunochemical studies. Plant Physiol 86:540–546CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mohammadi SA, Prasanna BM, Singh NN (2003) Sequential path model for determining interrelationships among grain yield and related characters in maize. Crop Sci 43:1690–1697CrossRefGoogle Scholar
  62. Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lubberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genom 16:47CrossRefGoogle Scholar
  63. Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer GJ, Li J, Yan J (2016) Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytol 210:1083–1094CrossRefGoogle Scholar
  64. Pechanova O, Takáč T, Šamaj J, Pechan T (2013) Maize proteomics: an insight into the biology of an important cereal crop. Proteomics 13:637–662CrossRefGoogle Scholar
  65. Pengelly JJ, Kwasny S, Bala S, Evans JR, Voznesenskaya EV, Koteyeva NK, Edwards GE, Furbank RT, von Caemmerer S (2011) Functional analysis of corn husk photosynthesis. Plant Physiol 156:503–513CrossRefPubMedPubMedCentralGoogle Scholar
  66. Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250:923–930CrossRefGoogle Scholar
  67. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893CrossRefGoogle Scholar
  68. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sabadin PK, Júnior CLDS, Souza APD, Garcia AAF (2008) QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145:194–203CrossRefGoogle Scholar
  70. Salvi S, Giuliani S, Ricciolini C, Carraro N, Maccaferri M, Presterl T, Ouzunova M, Tuberosa R (2016) Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. J Exp Bot 67:1149–1159CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454CrossRefGoogle Scholar
  72. Sicard A, Thamm A, Marona C, Lee YW, Wahl V, Stinchcombe JR, Wright SI, Kappel C, Lenhard M (2014) Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene. Curr Biol 24:1880–1886CrossRefGoogle Scholar
  73. Silva L, Cruz CD, Moreira MA, Barros EGd (2007) Simulation of population size and genome saturation level for genetic mapping of recombinant inbred lines (RILs). Genet Mol Biol 30:1101–1108CrossRefGoogle Scholar
  74. Tao Y, Jiang L, Liu Q, Zhang Y, Zhang R, Ingvardsen CR, Frei UK, Wang B, Lai J, Lübberstedt T, Xu M (2013) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13:162CrossRefPubMedPubMedCentralGoogle Scholar
  75. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289CrossRefGoogle Scholar
  76. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162CrossRefGoogle Scholar
  77. Turnbough-Cl J (2008) Regulation of bacterial gene expression by the NTP substrates of transcription initiation. Mol Microbiol 69:10CrossRefGoogle Scholar
  78. Ushiku H, Yamashita K, Kawamata H, Waraya M, Katoh H, Yokoi K, Tanaka T, Ishii S, Nishizawa N, Kikuchi M (2016) Homeobox-only protein expression is a critical prognostic indicator of pancreatic neuroendocrine tumor and is regulated by promoter dna hypermethylation. Pancreas 45:1255CrossRefGoogle Scholar
  79. van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort JN, Rousselle-Bourgeois F, van Vliet J, Waugh R, Visser RG, Bakker J, van Eck HJ (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173:1075–1087CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wang S, Basten CJ, Zeng ZB (2005) Windows QTL cartographer version 25. North Carolina State University, RaleighGoogle Scholar
  81. Wang P, Kelly S, Fouracre JP, Langdale JA (2013) Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 75:656–670CrossRefGoogle Scholar
  82. Wang Y, Xu J, Deng D, Ding H, Bian Y, Yin Z, Wu Y, Zhou B, Zhao Y (2016) A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta 243:459–471CrossRefGoogle Scholar
  83. Widstrom NW, Butron A, Guo BZ, Wilson DM, Snook ME, Cleveland TE, Lynch RE (2003) Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aspergillus spp. Eur J Agron 19:563–572CrossRefGoogle Scholar
  84. Xiao Y, Tong H, Yang X, Xu S, Pan Q, Qiao F, Raihan MS, Luo Y, Liu H, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Liu J, Zhan W, Liu N, Wang H, Chen G, Cai Y, Xu G, Wang W, Zheng D, Yan J (2016) Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytol 210:1095–1106CrossRefGoogle Scholar
  85. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107:10578–10583CrossRefGoogle Scholar
  86. Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268PubMedPubMedCentralGoogle Scholar
  87. Xu GH, Wang XF, Huang C, Xu DY, Li D, Tian JG, Chen QY, Wang CL, Liang YM, Wu YY, Yang XH, Tian F (2017) Complex genetic architecture underlies maize tassel domestication. New Phytol 214:852–864CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yang J, Zhang Y, Liang Y, Showalter AM (2011a) Expression analyses of AtAGP17 and AtAGP19, two lysine-rich arabinogalactan proteins, in Arabidopsis. Plant Biol 13:431–438CrossRefGoogle Scholar
  89. Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2011b) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding 28:511–526CrossRefGoogle Scholar
  90. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, Mcmullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203CrossRefGoogle Scholar
  91. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar
  92. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zhou G, Zhu Q, Yang G, Huang J, Cheng S, Yue B, Zhang Z (2014) qEL7.2 is a pleiotropic QTL for kernel number per row, ear length and ear weight in maize (Zea mays L.). Euphytica 203:429–436CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection BreedingShenyang Agricultural UniversityShenyangChina
  2. 2.National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina

Personalised recommendations