Abstract
Key message
We were able to obtain good prediction accuracy in genomic selection with ~ 2000 GBS-derived SNPs. SNPs in genic regions did not improve prediction accuracy compared to SNPs in intergenic regions.
Abstract
Since genotyping can represent an important cost in genomic selection, it is important to minimize it without compromising the accuracy of predictions. The objectives of the present study were to explore how a decrease in the unit cost of genotyping impacted: (1) the number of single nucleotide polymorphism (SNP) markers; (2) the accuracy of the resulting genotypic data; (3) the extent of coverage on both physical and genetic maps; and (4) the prediction accuracy (PA) for six important traits in barley. Variations on the genotyping by sequencing protocol were used to generate 16 SNP sets ranging from ~ 500 to ~ 35,000 SNPs. The accuracy of SNP genotypes fluctuated between 95 and 99%. Marker distribution on the physical map was highly skewed toward the terminal regions, whereas a fairly uniform coverage of the genetic map was achieved with all but the smallest set of SNPs. We estimated the PA using three statistical models capturing (or not) the epistatic effect; the one modeling both additivity and epistasis was selected as the best model. The PA obtained with the different SNP sets was measured and found to remain stable, except with the smallest set, where a significant decrease was observed. Finally, we examined if the localization of SNP loci (genic vs. intergenic) affected the PA. No gain in PA was observed using SNPs located in genic regions. In summary, we found that there is considerable scope for decreasing the cost of genotyping in barley (to capture ~ 2000 SNPs) without loss of PA.
Similar content being viewed by others
References
Abed A, Légaré G, Pomerleau S, St-Cyr J, Boyle B, Belzile F (2017) Genotyping-by-sequencing on the Ion Torrent platform in barley. In: Harwood W (ed) Barley: methods in molecular biology. Humana Press, New York
Akdemir D, Jannink J-L (2015) Locally epistatic genomic relationship matrices for genomic association and prediction. Genetics 199(3):857–871. https://doi.org/10.1534/genetics.114.173658
Alvarado G, López M, Vargas M, Pacheco A, Rodríguez F, Burgueño J, Crossa J (2015) META-R (Multi Environment Trial Analysis with R for Windows.) International Maize and Wheat Improvement Center. http://hdl.handle.net/11529/10201
Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21(4):610–617. https://doi.org/10.1101/gr.115402.110
Arruda MP, Brown PJ, Lipka AE, Krill AM, Thurber C, Kolb FL (2015) Genomic selection for predicting head blight resistance in a wheat breeding program. Plant Genome. https://doi.org/10.3835/plantgenome2015.01.0003
Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69(21):3613–3634. https://doi.org/10.1007/s00018-012-0990-9
Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in Maize. Crop Sci 47(3):1082. https://doi.org/10.2135/cropsci2006.11.0690
Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A et al (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet. https://doi.org/10.3389/fgene.2016.00221
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635. https://doi.org/10.1093/bioinformatics/btm308
Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81(5):1084–1097. https://doi.org/10.1086/521987
Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52(2):707. https://doi.org/10.2135/cropsci2011.06.0299
Caldwell KS (2005) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172(1):557–567. https://doi.org/10.1534/genetics.104.038489
Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS: functional characterisation of HvCO1 in Barley. Plant J 69(5):868–880. https://doi.org/10.1111/j.1365-313X.2011.04839.x
Cantalapiedra CP, Boudiar R, Casas AM, Igartua E, Contreras-Moreira B (2015) BARLEYMAP: physical and genetic mapping of nucleotide sequences and annotation of surrounding loci in barley. Mol Breed. https://doi.org/10.1007/s11032-015-0253-1
Casao MC, Karsai I, Igartua E, Gracia MP, Veisz O, Casas AM (2011) Adaptation of Barley to mild winters a role for PPDH2. BMC Plant Biol 11:164. https://doi.org/10.1186/1471-2229-11-164
Cattivelli L, Ceccarelli S, Romagosa I, Stanca M (2011) Abiotic stresses in barley: problems and solutions. In: Ullrich SE (ed) Barley, production, improvement, and uses. Wiley-Blackwell, Chichester, pp 282–306
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain W1118; Iso-2; Iso-3. Fly 6(2):80–92. https://doi.org/10.4161/fly.19695
Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A et al (2009) Development and implementation of high-throughput SNP genotyping in Barley. BMC Genom 10(1):582. https://doi.org/10.1186/1471-2164-10-582
Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated Barley. Nat Genet 44(12):1388–1392. https://doi.org/10.1038/ng.2447
Crossa J, de los Campos G, Pérez-Rodríguez P, Gianola D, Burgueno J, Araus JL, Makumbi D et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186(2):713–724. https://doi.org/10.1534/genetics.110.118521
Crossa J, Pérez-Rodríguez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C (2011) Genomic selection and prediction in plant breeding. J Crop Improv 25(3):239–261. https://doi.org/10.1080/15427528.2011.558767
Crossa J, de los Campos G, Maccaferri M, Tuberosa R, Burgueño J, Pérez-Rodríguez P (2016) Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum Wheat. Crop Sci 56(5):2193. https://doi.org/10.2135/cropsci2015.04.0260
Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P, de los Campos G, Montesinos-López OA, Burgueño J (2016) Genomic prediction of genotype × environment interaction kernel regression models. Plant Genome. https://doi.org/10.3835/plantgenome2016.03.0024
Daetwyler HD, Calus MPL, Pong-Wong R, Campos G, Hickey JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193(2):347–365. https://doi.org/10.1534/genetics.112.147983
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510. https://doi.org/10.1038/nrg3012
de los Campos G, Gianola G, Rosa GJM (2009a) Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J Anim Sci 87(6):1883–1887. https://doi.org/10.2527/jas.2008-1259
de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM (2009b) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182(1):375–385. https://doi.org/10.1534/genetics.109.101501
de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92(04):295–308. https://doi.org/10.1017/s0016672310000285
Desta ZA, Ortiz Ríos R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379
Friedt W (2011) Barley breeding history, progress, objectives, and technology. In: Ullrich SE (ed) Barley, production, improvement, and uses. Wiley-Blackwell, Chichester, pp 160–220
Gianola D (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173(3):1761–1776. https://doi.org/10.1534/genetics.105.049510
Gianola D, van Kaam JBCHM (2008) Reproducing Kernel Hilbert Spaces Regression methods for genomic assisted prediction of quantitative traits. Genetics 178(4):2289–2303. https://doi.org/10.1534/genetics.107.084285
González-Camacho JM, de los Campos G, Pérez-Rodríguez P, Gianola D, Cairns JE, Mahuku G, Babu R, Crossa J (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125(4):759–771. https://doi.org/10.1007/s00122-012-1868-9
Gorjanc G, Cleveland MA, Houston RD, Hickey JM (2015) Potential of genotyping-by-sequencing for genomic selection in livestock populations. Genet Sel Evol 47(1):12. https://doi.org/10.1186/s12711-015-0102-z
Gorjanc G, Dumasy J-F, Gonen S, Gaynor RC, Antolin R, Hickey JM (2017) Potential of low-coverage genotyping-by-sequencing and imputation for cost-effective genomic selection in biparental segregating populations. Crop Sci 57(3):1404. https://doi.org/10.2135/cropsci2016.08.0675
Graner A, Kilian A, Kleinhofs A (2011) Barley genome organization, mapping, and synteny. In: Ullrich SE (ed) Barley, production, improvement, and uses. Wiley-Blackwell, Chichester, pp 63–84
Griffiths S (2003) The evolution of CONSTANS-like gene families in Barley, Rice, and Arabidopsis. Plant Physiol 131(4):1855–1867. https://doi.org/10.1104/pp.102.016188
Habier D, Fernando RL, Garrick DJ (2013) Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 194(3):597–607. https://doi.org/10.1534/genetics.113.152207
Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ, Blake T et al (2010) Population structure and linkage disequilibrium in U.S. Barley germplasm: implications for association mapping. Crop Sci 50(2):556. https://doi.org/10.2135/cropsci2009.04.0198
He J, Xiaoqing Z, Laroche A, Lu Z-X, Liu HK, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00484
Henderson CR (1985) Best Linear Unbiased Prediction of nonadditive genetic merits in noninbred populations. J Anim Sci 60(1):111–117
Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52(1):146. https://doi.org/10.2135/cropsci2011.06.0297
Hickey JM, Crossa J, Babu R, de los Campos G (2012) Factors affecting the accuracy of genotype imputation in populations from several Maize breeding programs. Crop Sci 52(2):654. https://doi.org/10.2135/cropsci2011.07.0358
Horsley RD, Schmierer D, Maier C, Kudrna D, Urrea CA, Steffenson BJ, Schwarz PB et al (2006) Identification of QTLs associated with fusarium head blight resistance in Barley accession CIho 4196. Crop Sci 46(1):145. https://doi.org/10.2135/cropsci2005.0247
Howard R, Carriquiry AL, Beavis WD (2014) Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3-Genes Genom Genet 4(6):1027–1046. https://doi.org/10.1534/g3.114.010298
Huang Y-F, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated Oat. PLoS ONE 9(7):e102448. https://doi.org/10.1371/journal.pone.0102448
Iwata H, Jannink J-L (2011) Accuracy of genomic selection prediction in barley breeding programs: a simulation study based on the real single nucleotide polymorphism data of Barley breeding lines. Crop Sci 51(5):1915. https://doi.org/10.2135/cropsci2010.12.0732
Jiang G-L (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, Rijeka, pp 45–83
Jiang Y, Reif JC (2015) Modeling epistasis in genomic selection. Genetics 201(2):759–768. https://doi.org/10.1534/genetics.115.177907
Komatsuda T (2014) Domestication. In: Kumlehn J, Stein N (eds) Biotechnological approaches to Barley improvement. Vol. 69. Biotechnology in Agriculture and Forestry. Springer, Berlin, pp 37–54
Kraakman ATW (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring Barley cultivars. Genetics 168(1):435–446. https://doi.org/10.1534/genetics.104.026831
Lamara M, Zhang LY, Marchand S, Tinker NA, Belzile F, Golding B (2013) Comparative analysis of genetic diversity in Canadian Barley assessed by SSR, DarT, and Pedigree data. Genome 56(6):351–358. https://doi.org/10.1139/gen-2013-0048
Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among Wheat, Rice, and Barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to fusarium head blight in Wheat. Funct Integr Genomics 6(2):83–89. https://doi.org/10.1007/s10142-005-0007-y
Lorenz AJ, Smith KP (2015) Adding genetically distant individuals to training populations reduces genomic prediction accuracy in Barley. Crop Sci 55(6):2657. https://doi.org/10.2135/cropsci2014.12.0827
Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J-L (2011) Genomic selection in plant breeding. In: Elsevier Inc. (ed) Advances in Agronomy, vol 110, pp 77–123
Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for fusarium head blight resistance in six-row Barley. Crop Sci 52(4):1609. https://doi.org/10.2135/cropsci2011.09.0503
Mamo BE, Steffenson BJ (2015) Genome-wide association mapping of fusarium head blight resistance and agromorphological traits in Barley landraces from Ethiopia and Eritrea. Crop Sci 55(4):1494. https://doi.org/10.2135/cropsci2014.06.0428
Mascher M, Wu S, St. Amand P, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in Barley. PLoS ONE 8(10):e76925. https://doi.org/10.1371/journal.pone.0076925
Massman JM, Gordillo A, Lorenzana RE, Bernardo R (2013) Genome-wide predictions from Maize Single-cross data. Theor Appl Genet 126(1):13–22. https://doi.org/10.1007/s00122-012-1955-y
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829
Mikołajczak K, Ogrodowicz P, Gudyś K, Krystkowiak K, Sawikowska A, Frohmberg W, Górny A et al (2016) Quantitative trait loci for yield and yield-related traits in spring Barley populations derived from crosses between European and Syrian cultivars. PLoS ONE 11(5):e0155938. https://doi.org/10.1371/journal.pone.0155938
Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H et al (2011) An Improved consensus linkage map of Barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4(3):238. https://doi.org/10.3835/plantgenome2011.08.0023
Nielsen NH, Jahoor A, Jensen JD, Orabi J, Cericola F, Edriss V, Jensen J (2016) Genomic prediction of seed quality traits using advanced Barley breeding lines. PLoS ONE 11(10):e0164494. https://doi.org/10.1371/journal.pone.0164494
Nishida H, Ishihara D, Ishii M, Kaneko T, Kawahigashi H, Akashi Y, Saisho D et al (2013) Phytochrome C is a key factor controlling long-day flowering in Barley. Plant Physiol 163(2):804–814. https://doi.org/10.1104/pp.113.222570
Ornella L, Singh S, Pérez-Rodríguez P, Burgueño J, Singh R, Tapia E, Bhavani S et al (2012) Genomic prediction of genetic values for resistance to wheat rusts. Plant Genome 5(3):136. https://doi.org/10.3835/plantgenome2012.07.0017
Ortiz Ríos R (2015) Plant breeding in the omics era. Springer, Cham. https://doi.org/10.1007/978-3-319-20532-8
Pankin A, Campoli C, Dong X, Kilian B, Sharma R, Himmelbach A, Saini R et al (2014) Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the Early Maturity 5 locus modulating the circadian clock and photoperiodic flowering in Barley. Genetics 198(1):383–396. https://doi.org/10.1534/genetics.114.165613
Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a worldwide spring Barley collection. BMC Plant Biol 12(1):16
Paulitz TC, Steffenson BJ (2011) Biotic stress in Barley: disease problems and solutions. In: Ullrich SE (ed) Barley, production, improvement, and uses. Wiley-Blackwell, Chichester, pp 307–354
Pérez-Rodríguez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198(2):483–495. https://doi.org/10.1534/genetics.114.164442
Pérez-Rodríguez P, Gianola D, González-Camacho JM, Crossa J, Manès Y, Dreisigacker S (2012) Comparison between linear and non-parametric regression models for genome-enabled prediction in Wheat. G3-Genes Genom Genet 2(12):1595–1605. https://doi.org/10.1534/g3.112.003665
Pérez-Rodríguez P, Crossa J, Rutkoski J, Poland JA, Singh R, Legarra A, Autrique E, de los Campos G, Burgueño J, Dreisigacker S (2017) Single-step genomic and pedigree genotype × environment interaction models for predicting Wheat lines in international environments. Plant Genome. https://doi.org/10.3835/plantgenome2016.09.0089
Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics Plant. Genome 5(3):92. https://doi.org/10.3835/plantgenome2012.05.0005
Prom LK, Steffenson BJ, Salas B, Fetch TG Jr, Casper HH (1996) Evaluation of selected barley accessions for resistance to Fusarium head blight and deoxynivalenol concentration. In: Slinkard A, Scoles G, Rossnagel B (eds) Proceeding of the 5th international Oat conference and the 7th International Barley Genetics Symposium. University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp 764–766
R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Rajsic P, Weersink A, Navabi A, Pauls KP (2016) Economics of genomic selection: the role of prediction accuracy and relative genotyping costs. Euphytica 210(2):259–276. https://doi.org/10.1007/s10681-016-1716-0
Ramsay L, Colas I, Waugh R (2014) Modulation of meiotic recombination. In: Kumlehn J, Stein N (eds) Biotechnological approaches to Barley improvement. Vol. 69. Biotechnology in Agriculture and Forestry. Springer, Berlin, pp 311–329
Ren X, Wang J, Liu L, Sun G, Li C, Luo H, Sun D (2016) SNP-based high density genetic map and mapping of btwd1 dwarfing gene in Barley. Sci Rep. https://doi.org/10.1038/srep31741
Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid Maize. Nat Genet 44(2):217–220. https://doi.org/10.1038/ng.1033
Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci 103(49):18656–18661
Sallam AH, Smith KP (2016) Genomic selection performs similarly to phenotypic selection in Barley. Crop Sci 56(6):2871. https://doi.org/10.2135/cropsci2015.09.0557
Sallam AH, Endelman JB, Jannink J-L, Smith KP (2015) Assessing genomic selection prediction accuracy in a dynamic Barley breeding population. Plant Genome. https://doi.org/10.3835/plantgenome2014.05.0020
Schmidt M, Kollers S, Maasberg-Prelle A, Grober J, Schinkel B, Tomerius A, Graner A, Korzun V (2016) Prediction of malting quality traits in Barley based on genome-wide marker data to assess the potential of genomic selection. Theor Appl Genet 129(2):203–213. https://doi.org/10.1007/s00122-015-2639-1
Sousa MB, Cuevas J, de Oliveira Couto EJ, Pérez-Rodríguez P, Jarquín D, Fritsche-Neto R, Burgueño J, Crossa J (2017) Genomic-enabled prediction in maize using kernel models with genotype × environment interaction. G3-Genes Genom Genet. https://doi.org/10.1534/g3.117.042341
Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink J-L, McCouch SR (2015) Genomic selection and association mapping in Rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical Rice breeding lines. PLoS Genet 11(2):e1004982. https://doi.org/10.1371/journal.pgen.1004982
Steffenson BJ, Smith KP (2006) Breeding Barley for multiple disease resistance in the upper midwest region of the USA. Czech J Genet Plant Breed 42(3):79
Tangni EK, Motte J-C, Callebaut A, Chandelier A, De Schrijver M, Pussemier L (2011) Deoxynivalenol loads in matched pair wheat samples in Belgium: comparison of ELISA VERATOX Kit against Liquid Chromatography. Mycotoxin Res 27(2):105–113. https://doi.org/10.1007/s12550-010-0081-4
Torkamaneh D, Laroche J, Bastien M, Abed A, Belzile F (2017) Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. BMC Bioinform. https://doi.org/10.1186/s12859-016-1431-9
von Bothmer R, Komatsuda T (2011) Barley origin and related species. In: Ullrich SE (ed) Barley, production, improvement, and uses. Wiley-Blackwell, Chichester, pp 14–62
Walsh B (2001) Quantitative genetics in the age of genomics. Theor Popul Biol 59:175184
Wang J, Yang J, Jia Q, Zhu J, Shang Y, Hua W, Zhou M (2014) A new QTL for plant height in Barley (Hordeum vulgare L.) showing no negative effects on grain yield. PLoS ONE 9(2):e90144. https://doi.org/10.1371/journal.pone.0090144
Wang J, Sun G, Ren X, Li C, Liu L, Wang Q, Du B, Sun D (2016) QTL underlying some agronomic traits in Barley detected by SNP markers. BMC Genet. https://doi.org/10.1186/s12863-016-0409-y
Waugh R, Thomas B, Flavell A, Ramsay L, Comadran J, Russell J (2014) Genome-wide association scans (GWAS). In: Kumlehn J, Stein N (eds) Biotechnological approaches to Barley improvement. Vol. 69. Biotechnology in Agriculture and Forestry. Springer, Berlin, pp 345–365
Werner CR, Voss-Fels KP, Miller CN, Qian W, Hua W, Guan C-Y, Snowdon RJ, Qian L (2018) Effective genomic selection in a narrow-genepool crop with low-density markers: Asian rapeseed as an example. Plant Genome. https://doi.org/10.3835/plantgenome2017.09.0084
Wientjes YCJ, Veerkamp RF, Calus MPL (2013) The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics 193(2):621–631. https://doi.org/10.1534/genetics.112.146290
Wolfe D, Dudek S, Ritchie MD, Pendergrass SA (2013) Visualizing genomic information across chromosomes with PhenoGram. BioData Min 6(1):18
Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O et al (2015) Analysis of main effect qtl for thousand grain weight in european winter Wheat (Triticum Aestivum L.) by genome-wide association mapping. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00644
Zhang G, Li C, Liu X (2013) Advance in Barley sciences: Proceedings of 11th International Barley Genetics Symposium. Springer Dordrecht Heidelberg New York London and Zhejiang University Press. https://doi.org/10.1007/978-94-007-4682-4
Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid Wheat. Heredity 112(6):638
Zhong S, Dekkers JCM, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182(1):355–364. https://doi.org/10.1534/genetics.108.098277
Acknowledgements
This study was funded jointly by the Natural Sciences and Engineering Research Council of Canada and by Céréla Inc. through a Collaborative Research and Development grant (RDCPJ 470998-14), The funders had no role in study design, data collection and analysis or preparation of the manuscript. We are grateful to Martin Lacroix, Suzanne Marchand and Eric Fournier (Université Laval), Annie Archambault and Samuel Ostiguy (Céréla) as well as the Biometrics and Statistics Unit (CIMMYT) for their assistance with various aspects of this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Communicated by Marcos Malosetti.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Abed, A., Pérez-Rodríguez, P., Crossa, J. et al. When less can be better: How can we make genomic selection more cost-effective and accurate in barley?. Theor Appl Genet 131, 1873–1890 (2018). https://doi.org/10.1007/s00122-018-3120-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00122-018-3120-8